238 research outputs found

    Design Space Exploration of DNNs for Autonomous Systems

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Developing intelligent agents that can perceive and understand the rich visualworld around us has been a long-standing goal in the field of AI. Recently, asignificant progress has been made by the CNNs/DNNs to the incredible advances& in a wide range of applications such as ADAS, intelligent cameras surveillance,autonomous systems, drones, & robots. Design space exploration (DSE) of NNs andother techniques have made CNN/DNN memory & computationally efficient. Butthe major design hurdles for deployment are limited resources such as computation,memory, energy efficiency, and power budget. DSE of small DNN architectures forADAS emerged with better and efficient architectures such as baseline SqueezeNetand SqueezeNext. These architectures are exclusively known for their small modelsize, good model speed & model accuracy.In this thesis study, two new DNN architectures are proposed. Before diving intothe proposed architectures, DSE of DNNs explores the methods to improveDNNs/CNNs.Further, understanding the different hyperparameters tuning &experimenting with various optimizers and newly introduced methodologies. First,High Performance SqueezeNext architecture ameliorate the performance of existingDNN architectures. The intuition behind this proposed architecture is to supplantconvolution layers with a more sophisticated block module & to develop a compactand efficient architecture with a competitive accuracy. Second, Shallow SqueezeNextarchitecture is proposed which achieves better model size results in comparison tobaseline SqueezeNet and SqueezeNext is presented. It illustrates the architecture is xviicompact, efficient and flexible in terms of model size and accuracy.Thestate-of-the-art SqueezeNext baseline and SqueezeNext baseline are used as thefoundation to recreate and propose the both DNN architectures in this study. Dueto very small model size with competitive model accuracy and decent model testingspeed it is expected to perform well on the ADAS systems.The proposedarchitectures are trained and tested from scratch on CIFAR-10 [30] & CIFAR-100[34] datasets. All the training and testing results are visualized with live loss andaccuracy graphs by using livelossplot. In the last, both of the proposed DNNarchitectures are deployed on BlueBox2.0 by NXP

    Dynamic Scheduling for Energy Minimization in Delay-Sensitive Stream Mining

    Get PDF
    Numerous stream mining applications, such as visual detection, online patient monitoring, and video search and retrieval, are emerging on both mobile and high-performance computing systems. These applications are subject to responsiveness (i.e., delay) constraints for user interactivity and, at the same time, must be optimized for energy efficiency. The increasingly heterogeneous power-versus-performance profile of modern hardware presents new opportunities for energy saving as well as challenges. For example, employing low-performance processing nodes can save energy but may violate delay requirements, whereas employing high-performance processing nodes can deliver a fast response but may unnecessarily waste energy. Existing scheduling algorithms balance energy versus delay assuming constant processing and power requirements throughout the execution of a stream mining task and without exploiting hardware heterogeneity. In this paper, we propose a novel framework for dynamic scheduling for energy minimization (DSE) that leverages this emerging hardware heterogeneity. By optimally determining the processing speeds for hardware executing classifiers, DSE minimizes the average energy consumption while satisfying an average delay constraint. To assess the performance of DSE, we build a face detection application based on the Viola-Jones classifier chain and conduct experimental studies via heterogeneous processor system emulation. The results show that, under the same delay requirement, DSE reduces the average energy consumption by up to 50% in comparison to conventional scheduling that does not exploit hardware heterogeneity. We also demonstrate that DSE is robust against processing node switching overhead and model inaccuracy

    Run-time resource allocation for embedded Multiprocessor System-on-Chip using tree-based design space exploration

    Get PDF
    The dynamic nature of application workloads in modern MPSoC-based embedded systems is growing. To cope with the dynamism of application workloads at run time and to improve the efficiency of the underlying system architecture, this paper presents a novel run-time resource allocation algorithm for multimedia applications with the objective of minimizing energy consumption for predefined deadlines. This algorithm is based on a novel tree-based design space exploration (DSE) method, which is performed in two phases: design-time and run-time. During design time, application clustering is combined with the tree-based DSE, and after that, feature extraction and application classification is performed during run-time based on well-known machine learning techniques. We evaluated our algorithm using a heterogeneous MPSoC system with several applications that have different communication and computation behaviors. Our experimental results revealed that during runtime, more than 91% of the applications were classified correctly by our proposed algorithm to select the best resources for allocation. Therefore the results clearly confirm that our algorithm is effective

    HAPI: Hardware-Aware Progressive Inference

    Full text link
    Convolutional neural networks (CNNs) have recently become the state-of-the-art in a diversity of AI tasks. Despite their popularity, CNN inference still comes at a high computational cost. A growing body of work aims to alleviate this by exploiting the difference in the classification difficulty among samples and early-exiting at different stages of the network. Nevertheless, existing studies on early exiting have primarily focused on the training scheme, without considering the use-case requirements or the deployment platform. This work presents HAPI, a novel methodology for generating high-performance early-exit networks by co-optimising the placement of intermediate exits together with the early-exit strategy at inference time. Furthermore, we propose an efficient design space exploration algorithm which enables the faster traversal of a large number of alternative architectures and generates the highest-performing design, tailored to the use-case requirements and target hardware. Quantitative evaluation shows that our system consistently outperforms alternative search mechanisms and state-of-the-art early-exit schemes across various latency budgets. Moreover, it pushes further the performance of highly optimised hand-crafted early-exit CNNs, delivering up to 5.11x speedup over lightweight models on imposed latency-driven SLAs for embedded devices.Comment: Accepted at the 39th International Conference on Computer-Aided Design (ICCAD), 202

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search

    An Accurate EEGNet-based Motor-Imagery Brain-Computer Interface for Low-Power Edge Computing

    Full text link
    This paper presents an accurate and robust embedded motor-imagery brain-computer interface (MI-BCI). The proposed novel model, based on EEGNet, matches the requirements of memory footprint and computational resources of low-power microcontroller units (MCUs), such as the ARM Cortex-M family. Furthermore, the paper presents a set of methods, including temporal downsampling, channel selection, and narrowing of the classification window, to further scale down the model to relax memory requirements with negligible accuracy degradation. Experimental results on the Physionet EEG Motor Movement/Imagery Dataset show that standard EEGNet achieves 82.43%, 75.07%, and 65.07% classification accuracy on 2-, 3-, and 4-class MI tasks in global validation, outperforming the state-of-the-art (SoA) convolutional neural network (CNN) by 2.05%, 5.25%, and 5.48%. Our novel method further scales down the standard EEGNet at a negligible accuracy loss of 0.31% with 7.6x memory footprint reduction and a small accuracy loss of 2.51% with 15x reduction. The scaled models are deployed on a commercial Cortex-M4F MCU taking 101ms and consuming 4.28mJ per inference for operating the smallest model, and on a Cortex-M7 with 44ms and 18.1mJ per inference for the medium-sized model, enabling a fully autonomous, wearable, and accurate low-power BCI

    Solving the challenges of concept drift in data stream classification.

    Get PDF
    The rise of network connected devices and applications leads to a significant increase in the volume of data that are continuously generated overtime time, called data streams. In real world applications, storing the entirety of a data stream for analyzing later is often not practical, due to the data stream’s potentially infinite volume. Data stream mining techniques and frameworks are therefore created to analyze streaming data as they arrive. However, compared to traditional data mining techniques, challenges unique to data stream mining also emerge, due to the high arrival rate of data streams and their dynamic nature. In this dissertation, an array of techniques and frameworks are presented to improve the solutions on some of the challenges. First, this dissertation acknowledges that a “no free lunch” theorem exists for data stream mining, where no silver bullet solution can solve all problems of data stream mining. The dissertation focuses on detection of changes of data distribution in data stream mining. These changes are called concept drift. Concept drift can be categorized into many types. A detection algorithm often works only on some types of drift, but not all of them. Because of this, the dissertation finds specific techniques to solve specific challenges, instead of looking for a general solution. Then, this dissertation considers improving solutions for the challenges of high arrival rate of data streams. Data stream mining frameworks often need to process vast among of data samples in limited time. Some data mining activities, notably data sample labeling for classification, are too costly or too slow in such large scale. This dissertation presents two techniques that reduce the amount of labeling needed for data stream classification. The first technique presents a grid-based label selection process that apply to highly imbalanced data streams. Such data streams have one class of data samples vastly outnumber another class. Many majority class samples need to be labeled before a minority class sample can be found due to the imbalance. The presented technique divides the data samples into groups, called grids, and actively search for minority class samples that are close by within a grid. Experiment results show the technique can reduce the total number of data samples needed to be labeled. The second technique presents a smart preprocessing technique that reduce the number of times a new learning model needs to be trained due to concept drift. Less model training means less data labels required, and thus costs less. Experiment results show that in some cases the reduced performance of learning models is the result of improper preprocessing of the data, not due to concept drift. By adapting preprocessing to the changes in data streams, models can retain high performance without retraining. Acknowledging the high cost of labeling, the dissertation then considers the scenario where labels are unavailable when needed. The framework Sliding Reservoir Approach for Delayed Labeling (SRADL) is presented to explore solutions to such problem. SRADL tries to solve the delayed labeling problem where concept drift occurs, and no labels are immediately available. SRADL uses semi-supervised learning by employing a sliding windowed approach to store historical data, which is combined with newly unlabeled data to train new models. Experiments show that SRADL perform well in some cases of delayed labeling. Next, the dissertation considers improving solutions for the challenge of dynamism within data streams, most notably concept drift. The complex nature of concept drift means that most existing detection algorithms can only detect limited types of concept drift. To detect more types of concept drift, an ensemble approach that employs various algorithms, called Heuristic Ensemble Framework for Concept Drift Detection (HEFDD), is presented. The occurrence of each type of concept drift is voted on by the detection results of each algorithm in the ensemble. Types of concept drift with votes past majority are then declared detected. Experiment results show that HEFDD is able to improve detection accuracy significantly while reducing false positives. With the ability to detect various types of concept drift provided by HEFDD, the dissertation tries to improve the delayed labeling framework SRADL. A new combined framework, SRADL-HEFDD is presented, which produces synthetic labels to handle the unavailability of labels by human expert. SRADL-HEFDD employs different synthetic labeling techniques based on different types of drift detected by HEFDD. Experimental results show that comparing to the default SRADL, the combined framework improves prediction performance when small amount of labeled samples is available. Finally, as machine learning applications are increasingly used in critical domains such as medical diagnostics, accountability, explainability and interpretability of machine learning algorithms needs to be considered. Explainable machine learning aims to use a white box approach for data analytics, which enables learning models to be explained and interpreted by human users. However, few studies have been done on explaining what has changed in a dynamic data stream environment. This dissertation thus presents Data Stream Explainability (DSE) framework. DSE visualizes changes in data distribution and model classification boundaries between chunks of streaming data. The visualizations can then be used by a data mining researcher to generate explanations of what has changed within the data stream. To show that DSE can help average users understand data stream mining better, a survey was conducted with an expert group and a non-expert group of users. Results show DSE can reduce the gap of understanding what changed in data stream mining between the two groups

    A throughput-latency co-optimised cascade of convolutional neural network classifiers

    Get PDF
    Convolutional Neural Networks constitute a promi-nent AI model for classification tasks, serving a broad span ofdiverse application domains. To enable their efficient deploymentin real-world tasks, the inherent redundancy of CNNs is fre-quently exploited to eliminate unnecessary computational costs.Driven by the fact that not all inputs require the same amount ofcomputation to drive a confident prediction, multi-precision cas-cade classifiers have been recently introduced. FPGAs comprise apromising platform for the deployment of such input-dependentcomputation models, due to their enhanced customisation ca-pabilities. Current literature, however, is limited to throughput-optimised cascade implementations, employing large batching atthe expense of a substantial latency aggravation prohibiting theirdeployment on real-time scenarios. In this work, we introduce anovel methodology for throughput-latency co-optimised cascadedCNN classification, deployed on a custom FPGA architecturetailored to the target application and deployment platform,with respect to a set of user-specified requirements on accuracyand performance. Our experiments indicate that the proposedapproach achieves comparable throughput gains with relatedstate-of-the-art works, under substantially reduced overhead inlatency, enabling its deployment on latency-sensitive applications
    corecore