47,741 research outputs found

    A Methodology for Automated Verification of Rosetta Specification Transformations

    Get PDF
    The Rosetta system-level design language is a specification language created to support design and analysis of heterogeneous models at varying levels of abstraction. These abstraction levels are represented in Rosetta as domains, specifying a particular semantic vocabulary and modeling style. The following dissertation proposes a framework, semantics and methodology for automated verification of safety preservation over specification transformations between domains. Utilizing the ideas of lattice theory, abstract interpretation and category theory we define the semantics of a Rosetta domain as well as safety of specification transformations between domains using Galois connections and functors. With the help of Isabelle, a higher order logic theorem prover, we verify the existence of Galois connections between Rosetta domains as well as safety of transforming specifications between these domains. The following work overviews the semantic infrastructure required to construct the Rosetta domain lattice and provides a methodology for verification of transformations within the lattice

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (βˆ€xβ€‰βˆƒy A(x,y))β‡’βˆƒwβ€‰βˆ€x A(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (βˆ€xβ€‰βˆƒy A(x,y))β‡’βˆƒzβ€‰βˆ€xβ€‰βˆƒy (y≀T(x,z)∧A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    Adiabatic and Hamiltonian computing on a 2D lattice with simple 2-qubit interactions

    Get PDF
    We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent 2-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.Comment: 33 pages, 5 figure
    • …
    corecore