582 research outputs found

    Powering the Internet of Things Through Light Communication

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Novel solutions are required to connect billions of devices to the network as envisioned by the IoT. In this article we propose to use LiFi, which is based on off-the-shelf LEDs, as an enabler for the IoT in indoor environments. We present LiFi4IoT, a system which, in addition to communication, provides three main services that the radio frequency (RF) IoT networks struggle to offer: precise device positioning; the possibility of delivering power, since energy can be harvested from light; and inherent security due to the propagation properties of visible light. We analyze the application space of IoT in indoor scenarios, and propose a LiFi4IoT access point (AP) that communicates simultaneously with IoT devices featuring different types of detectors, such as CMOS camera sensors, PDs, and solar cells. Based on the capabilities of these technologies, we define three types of energy self-sufficient IoT "motes" and analyze their feasibility. Finally, we identify the main research directions to enable the LiFi4IoT vision and provide preliminary results for several of these.Peer ReviewedPostprint (author's final draft

    Managing emergency situations in the smart city: The smart signal

    Get PDF
    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City

    Security and Privacy for IoT Ecosystems

    Get PDF
    Smart devices have become an integral part of our everyday life. In contrast to smartphones and laptops, Internet of Things (IoT) devices are typically managed by the vendor. They allow little or no user-driven customization. Users need to use and trust IoT devices as they are, including the ecosystems involved in the processing and sharing of personal data. Ensuring that an IoT device does not leak private data is imperative. This thesis analyzes security practices in popular IoT ecosystems across several price segments. Our results show a gap between real-world implementations and state-of-the-art security measures. The process of responsible disclosure with the vendors revealed further practical challenges. Do they want to support backward compatibility with the same app and infrastructure over multiple IoT device generations? To which extent can they trust their supply chains in rolling out keys? Mature vendors have a budget for security and are aware of its demands. Despite this goodwill, developers sometimes fail at securing the concrete implementations in those complex ecosystems. Our analysis of real-world products reveals the actual efforts made by vendors to secure their products. Our responsible disclosure processes and publications of design recommendations not only increase security in existing products but also help connected ecosystem manufacturers to develop secure products. Moreover, we enable users to take control of their connected devices with firmware binary patching. If a vendor decides to no longer offer cloud services, bootstrapping a vendor-independent ecosystem is the only way to revive bricked devices. Binary patching is not only useful in the IoT context but also opens up these devices as research platforms. We are the first to publish tools for Bluetooth firmware and lower-layer analysis and uncover a security issue in Broadcom chips affecting hundreds of millions of devices manufactured by Apple, Samsung, Google, and more. Although we informed Broadcom and customers of their technologies of the weaknesses identified, some of these devices no longer receive official updates. For these, our binary patching framework is capable of building vendor-independent patches and retrofit security. Connected device vendors depend on standards; they rarely implement lower-layer communication schemes from scratch. Standards enable communication between devices of different vendors, which is crucial in many IoT setups. Secure standards help making products secure by design and, thus, need to be analyzed as early as possible. One possibility to integrate security into a lower-layer standard is Physical-Layer Security (PLS). PLS establishes security on the Physical Layer (PHY) of wireless transmissions. With new wireless technologies emerging, physical properties change. We analyze how suitable PLS techniques are in the domain of mmWave and Visible Light Communication (VLC). Despite VLC being commonly believed to be very secure due to its limited range, we show that using VLC instead for PLS is less secure than using it with Radio Frequency (RF) communication. The work in this thesis is applied to mature products as well as upcoming standards. We consider security for the whole product life cycle to make connected devices and IoT ecosystems more secure in the long term
    corecore