1,217 research outputs found

    Online Context-based Object Recognition for Mobile Robots

    Get PDF
    This work proposes a robotic object recognition system that takes advantage of the contextual information latent in human-like environments in an online fashion. To fully leverage context, it is needed perceptual information from (at least) a portion of the scene containing the objects of interest, which could not be entirely covered by just an one-shot sensor observation. Information from a larger portion of the scenario could still be considered by progressively registering observations, but this approach experiences difficulties under some circumstances, e.g. limited and heavily demanded computational resources, dynamic environments, etc. Instead of this, the proposed recognition system relies on an anchoring process for the fast registration and propagation of objects’ features and locations beyond the current sensor frustum. In this way, the system builds a graphbased world model containing the objects in the scenario (both in the current and previously perceived shots), which is exploited by a Probabilistic Graphical Model (PGM) in order to leverage contextual information during recognition. We also propose a novel way to include the outcome of local object recognition methods in the PGM, which results in a decrease in the usually high CRF learning complexity. A demonstration of our proposal has been conducted employing a dataset captured by a mobile robot from restaurant-like settings, showing promising results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Who am I talking with? A face memory for social robots

    Get PDF
    In order to provide personalized services and to develop human-like interaction capabilities robots need to rec- ognize their human partner. Face recognition has been studied in the past decade exhaustively in the context of security systems and with significant progress on huge datasets. However, these capabilities are not in focus when it comes to social interaction situations. Humans are able to remember people seen for a short moment in time and apply this knowledge directly in their engagement in conversation. In order to equip a robot with capabilities to recall human interlocutors and to provide user- aware services, we adopt human-human interaction schemes to propose a face memory on the basis of active appearance models integrated with the active memory architecture. This paper presents the concept of the interactive face memory, the applied recognition algorithms, and their embedding into the robot’s system architecture. Performance measures are discussed for general face databases as well as scenario-specific datasets

    A discriminative approach to grounded spoken language understanding in interactive robotics

    Get PDF
    Spoken Language Understanding in Interactive Robotics provides computational models of human-machine communication based on the vocal input. However, robots operate in specific environments and the correct interpretation of the spoken sentences depends on the physical, cognitive and linguistic aspects triggered by the operational environment. Grounded language processing should exploit both the physical constraints of the context as well as knowledge assumptions of the robot. These include the subjective perception of the environment that explicitly affects linguistic reasoning. In this work, a standard linguistic pipeline for semantic parsing is extended toward a form of perceptually informed natural language processing that combines discriminative learning and distributional semantics. Empirical results achieve up to a 40% of relative error reduction

    Introduction: The Fourth International Workshop on Epigenetic Robotics

    Get PDF
    As in the previous editions, this workshop is trying to be a forum for multi-disciplinary research ranging from developmental psychology to neural sciences (in its widest sense) and robotics including computational studies. This is a two-fold aim of, on the one hand, understanding the brain through engineering embodied systems and, on the other hand, building artificial epigenetic systems. Epigenetic contains in its meaning the idea that we are interested in studying development through interaction with the environment. This idea entails the embodiment of the system, the situatedness in the environment, and of course a prolonged period of postnatal development when this interaction can actually take place. This is still a relatively new endeavor although the seeds of the developmental robotics community were already in the air since the nineties (Berthouze and Kuniyoshi, 1998; Metta et al., 1999; Brooks et al., 1999; Breazeal, 2000; Kozima and Zlatev, 2000). A few had the intuition – see Lungarella et al. (2003) for a comprehensive review – that, intelligence could not be possibly engineered simply by copying systems that are “ready made” but rather that the development of the system fills a major role. This integration of disciplines raises the important issue of learning on the multiple scales of developmental time, that is, how to build systems that eventually can learn in any environment rather than program them for a specific environment. On the other hand, the hope is that robotics might become a new tool for brain science similarly to what simulation and modeling have become for the study of the motor system. Our community is still pretty much evolving and “under construction” and for this reason, we tried to encourage submissions from the psychology community. Additionally, we invited four neuroscientists and no roboticists for the keynote lectures. We received a record number of submissions (more than 50), and given the overall size and duration of the workshop together with our desire to maintain a single-track format, we had to be more selective than ever in the review process (a 20% acceptance rate on full papers). This is, if not an index of quality, at least an index of the interest that gravitates around this still new discipline

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus
    • …
    corecore