1,358 research outputs found

    Web-based visualisation of head pose and facial expressions changes: monitoring human activity using depth data

    Full text link
    Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.Comment: 8th Computer Science and Electronic Engineering, (CEEC 2016), University of Essex, UK, 6 page

    Using data visualization to deduce faces expressions

    Get PDF
    ConferĂŞncia Internacional, realizada na Turquia, de 6-8 de setembro de 2018.Collect and examine in real time multi modal sensor data of a human face, is an important problem in computer vision, with applications in medical and monitoring analysis, entertainment and security. Although its advances, there are still many open issues in terms of the identification of the facial expression. Different algorithms and approaches have been developed to find out patterns and characteristics that can help the automatic expression identification. One way to study data is through data visualizations. Data visualization turns numbers and letters into aesthetically pleasing visuals, making it easy to recognize patterns and find exceptions. In this article, we use information visualization as a tool to analyse data points and find out possible existing patterns in four different facial expressions.info:eu-repo/semantics/publishedVersio

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Multimodal emotion recognition

    Get PDF
    Reading emotions from facial expression and speech is a milestone in Human-Computer Interaction. Recent sensing technologies, namely the Microsoft Kinect Sensor, provide basic input modalities data, such as RGB imaging, depth imaging and speech, that can be used in Emotion Recognition. Moreover Kinect can track a face in real time and present the face fiducial points, as well as 6 basic Action Units (AUs). In this work we explore this information by gathering a new and exclusive dataset. This is a new opportunity for the academic community as well to the progress of the emotion recognition problem. The database includes RGB, depth, audio, fiducial points and AUs for 18 volunteers for 7 emotions. We then present automatic emotion classification results on this dataset by employing k-Nearest Neighbor, Support Vector Machines and Neural Networks classifiers, with unimodal and multimodal approaches. Our conclusions show that multimodal approaches can attain better results.Ler e reconhecer emoções de expressões faciais e verbais é um marco na Interacção Humana com um Computador. As recentes tecnologias de deteção, nomeadamente o sensor Microsoft Kinect, recolhem dados de modalidades básicas como imagens RGB, de informaçãode profundidade e defala que podem ser usados em reconhecimento de emoções. Mais ainda, o sensor Kinect consegue reconhecer e seguir uma cara em tempo real e apresentar os pontos fiduciais, assim como as 6 AUs – Action Units básicas. Neste trabalho exploramos esta informação através da compilação de um dataset único e exclusivo que representa uma oportunidade para a comunidade académica e para o progresso do problema do reconhecimento de emoções. Este dataset inclui dados RGB, de profundidade, de fala, pontos fiduciais e AUs, para 18 voluntários e 7 emoções. Apresentamos resultados com a classificação automática de emoções com este dataset, usando classificadores k-vizinhos próximos, máquinas de suporte de vetoreseredes neuronais, em abordagens multimodais e unimodais. As nossas conclusões indicam que abordagens multimodais permitem obter melhores resultados

    Facial analysis with depth maps and deep learning

    Get PDF
    Tese de Doutoramento em Ciência e Tecnologia Web em associação com a Universidade de Trás-os-Montes e Alto Douro, apresentada à Universidade AbertaA recolha e análise sequencial de dados multimodais do rosto humano é um problema importante em visão por computador, com aplicações variadas na análise e monitorização médica, entretenimento e segurança. No entanto, devido à natureza do problema, há uma falta de sistemas acessíveis e fáceis de usar, em tempo real, com capacidade de anotações, análise 3d, capacidade de reanalisar e com uma velocidade capaz de detetar padrões faciais em ambientes de trabalho. No âmbito de um esforço contínuo, para desenvolver ferramentas de apoio à monitorização e avaliação de emoções/sinais em ambiente de trabalho, será realizada uma investigação relativa à aplicabilidade de uma abordagem de análise facial para mapear e avaliar os padrões faciais humanos. O objetivo consiste em investigar um conjunto de sistemas e técnicas que possibilitem responder à questão de como usar dados de sensores multimodais para obter um sistema de classificação para identificar padrões faciais. Com isso em mente, foi planeado desenvolver ferramentas para implementar um sistema em tempo real de forma a reconhecer padrões faciais. O desafio é interpretar esses dados de sensores multimodais para classificá-los com algoritmos de aprendizagem profunda e cumprir os seguintes requisitos: capacidade de anotações, análise 3d e capacidade de reanalisar. Além disso, o sistema tem que ser capaze de melhorar continuamente o resultado do modelo de classificação para melhorar e avaliar diferentes padrões do rosto humano. A FACE ANALYSYS, uma ferramenta desenvolvida no contexto desta tese de doutoramento, será complementada por várias aplicações para investigar as relações de vários dados de sensores com estados emocionais/sinais. Este trabalho é útil para desenvolver um sistema de análise adequado para a perceção de grandes quantidades de dados comportamentais.Collecting and analyzing in real time multimodal sensor data of a human face is an important problem in computer vision, with applications in medical and monitoring analysis, entertainment, and security. However, due to the exigent nature of the problem, there is a lack of affordable and easy to use systems, with real time annotations capability, 3d analysis, replay capability and with a frame speed capable of detecting facial patterns in working behavior environments. In the context of an ongoing effort to develop tools to support the monitoring and evaluation of human affective state in working environments, this research will investigate the applicability of a facial analysis approach to map and evaluate human facial patterns. Our objective consists in investigating a set of systems and techniques that make it possible to answer the question regarding how to use multimodal sensor data to obtain a classification system in order to identify facial patterns. With that in mind, it will be developed tools to implement a real-time system in a way that it will be able to recognize facial patterns from 3d data. The challenge is to interpret this multi-modal sensor data to classify it with deep learning algorithms and fulfill the follow requirements: annotations capability, 3d analysis and replay capability. In addition, the system will be able to enhance continuously the output result of the system with a training process in order to improve and evaluate different patterns of the human face. FACE ANALYSYS is a tool developed in the context of this doctoral thesis, in order to research the relations of various sensor data with human facial affective state. This work is useful to develop an appropriate visualization system for better insight of a large amount of behavioral data.N/

    A Framework for Students Profile Detection

    Get PDF
    Some of the biggest problems tackling Higher Education Institutions are students’ drop-out and academic disengagement. Physical or psychological disabilities, social-economic or academic marginalization, and emotional and affective problems, are some of the factors that can lead to it. This problematic is worsened by the shortage of educational resources, that can bridge the communication gap between the faculty staff and the affective needs of these students. This dissertation focus in the development of a framework, capable of collecting analytic data, from an array of emotions, affects and behaviours, acquired either by human observations, like a teacher in a classroom or a psychologist, or by electronic sensors and automatic analysis software, such as eye tracking devices, emotion detection through facial expression recognition software, automatic gait and posture detection, and others. The framework establishes the guidance to compile the gathered data in an ontology, to enable the extraction of patterns outliers via machine learning, which assist the profiling of students in critical situations, like disengagement, attention deficit, drop-out, and other sociological issues. Consequently, it is possible to set real-time alerts when these profiles conditions are detected, so that appropriate experts could verify the situation and employ effective procedures. The goal is that, by providing insightful real-time cognitive data and facilitating the profiling of the students’ problems, a faster personalized response to help the student is enabled, allowing academic performance improvements
    • …
    corecore