9,081 research outputs found

    Using KL-divergence to focus Deep Visual Explanation

    Full text link
    We present a method for explaining the image classification predictions of deep convolution neural networks, by highlighting the pixels in the image which influence the final class prediction. Our method requires the identification of a heuristic method to select parameters hypothesized to be most relevant in this prediction, and here we use Kullback-Leibler divergence to provide this focus. Overall, our approach helps in understanding and interpreting deep network predictions and we hope contributes to a foundation for such understanding of deep learning networks. In this brief paper, our experiments evaluate the performance of two popular networks in this context of interpretability.Comment: Presented at NIPS 2017 Symposium on Interpretable Machine Learnin

    How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?

    Full text link
    Modern applications and progress in deep learning research have created renewed interest for generative models of text and of images. However, even today it is unclear what objective functions one should use to train and evaluate these models. In this paper we present two contributions. Firstly, we present a critique of scheduled sampling, a state-of-the-art training method that contributed to the winning entry to the MSCOCO image captioning benchmark in 2015. Here we show that despite this impressive empirical performance, the objective function underlying scheduled sampling is improper and leads to an inconsistent learning algorithm. Secondly, we revisit the problems that scheduled sampling was meant to address, and present an alternative interpretation. We argue that maximum likelihood is an inappropriate training objective when the end-goal is to generate natural-looking samples. We go on to derive an ideal objective function to use in this situation instead. We introduce a generalisation of adversarial training, and show how such method can interpolate between maximum likelihood training and our ideal training objective. To our knowledge this is the first theoretical analysis that explains why adversarial training tends to produce samples with higher perceived quality

    Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of Machine Learning Models

    Full text link
    Interpretation and diagnosis of machine learning models have gained renewed interest in recent years with breakthroughs in new approaches. We present Manifold, a framework that utilizes visual analysis techniques to support interpretation, debugging, and comparison of machine learning models in a more transparent and interactive manner. Conventional techniques usually focus on visualizing the internal logic of a specific model type (i.e., deep neural networks), lacking the ability to extend to a more complex scenario where different model types are integrated. To this end, Manifold is designed as a generic framework that does not rely on or access the internal logic of the model and solely observes the input (i.e., instances or features) and the output (i.e., the predicted result and probability distribution). We describe the workflow of Manifold as an iterative process consisting of three major phases that are commonly involved in the model development and diagnosis process: inspection (hypothesis), explanation (reasoning), and refinement (verification). The visual components supporting these tasks include a scatterplot-based visual summary that overviews the models' outcome and a customizable tabular view that reveals feature discrimination. We demonstrate current applications of the framework on the classification and regression tasks and discuss other potential machine learning use scenarios where Manifold can be applied

    Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

    Full text link
    In this paper we study how to learn stochastic, multimodal transition dynamics in reinforcement learning (RL) tasks. We focus on evaluating transition function estimation, while we defer planning over this model to future work. Stochasticity is a fundamental property of many task environments. However, discriminative function approximators have difficulty estimating multimodal stochasticity. In contrast, deep generative models do capture complex high-dimensional outcome distributions. First we discuss why, amongst such models, conditional variational inference (VI) is theoretically most appealing for model-based RL. Subsequently, we compare different VI models on their ability to learn complex stochasticity on simulated functions, as well as on a typical RL gridworld with multimodal dynamics. Results show VI successfully predicts multimodal outcomes, but also robustly ignores these for deterministic parts of the transition dynamics. In summary, we show a robust method to learn multimodal transitions using function approximation, which is a key preliminary for model-based RL in stochastic domains.Comment: Scaling Up Reinforcement Learning (SURL) Workshop @ European Machine Learning Conference (ECML

    Examining CNN Representations with respect to Dataset Bias

    Full text link
    Given a pre-trained CNN without any testing samples, this paper proposes a simple yet effective method to diagnose feature representations of the CNN. We aim to discover representation flaws caused by potential dataset bias. More specifically, when the CNN is trained to estimate image attributes, we mine latent relationships between representations of different attributes inside the CNN. Then, we compare the mined attribute relationships with ground-truth attribute relationships to discover the CNN's blind spots and failure modes due to dataset bias. In fact, representation flaws caused by dataset bias cannot be examined by conventional evaluation strategies based on testing images, because testing images may also have a similar bias. Experiments have demonstrated the effectiveness of our method.Comment: in AAAI 201

    Confident Multiple Choice Learning

    Full text link
    Ensemble methods are arguably the most trustworthy techniques for boosting the performance of machine learning models. Popular independent ensembles (IE) relying on naive averaging/voting scheme have been of typical choice for most applications involving deep neural networks, but they do not consider advanced collaboration among ensemble models. In this paper, we propose new ensemble methods specialized for deep neural networks, called confident multiple choice learning (CMCL): it is a variant of multiple choice learning (MCL) via addressing its overconfidence issue.In particular, the proposed major components of CMCL beyond the original MCL scheme are (i) new loss, i.e., confident oracle loss, (ii) new architecture, i.e., feature sharing and (iii) new training method, i.e., stochastic labeling. We demonstrate the effect of CMCL via experiments on the image classification on CIFAR and SVHN, and the foreground-background segmentation on the iCoseg. In particular, CMCL using 5 residual networks provides 14.05% and 6.60% relative reductions in the top-1 error rates from the corresponding IE scheme for the classification task on CIFAR and SVHN, respectively.Comment: Accepted in ICML 201

    InfoMask: Masked Variational Latent Representation to Localize Chest Disease

    Full text link
    The scarcity of richly annotated medical images is limiting supervised deep learning based solutions to medical image analysis tasks, such as localizing discriminatory radiomic disease signatures. Therefore, it is desirable to leverage unsupervised and weakly supervised models. Most recent weakly supervised localization methods apply attention maps or region proposals in a multiple instance learning formulation. While attention maps can be noisy, leading to erroneously highlighted regions, it is not simple to decide on an optimal window/bag size for multiple instance learning approaches. In this paper, we propose a learned spatial masking mechanism to filter out irrelevant background signals from attention maps. The proposed method minimizes mutual information between a masked variational representation and the input while maximizing the information between the masked representation and class labels. This results in more accurate localization of discriminatory regions. We tested the proposed model on the ChestX-ray8 dataset to localize pneumonia from chest X-ray images without using any pixel-level or bounding-box annotations.Comment: Accepted to MICCAI 201

    An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction

    Full text link
    Decisions of complex language understanding models can be rationalized by limiting their inputs to a relevant subsequence of the original text. A rationale should be as concise as possible without significantly degrading task performance, but this balance can be difficult to achieve in practice. In this paper, we show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective. Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale. Using IB, we derive a learning objective that allows direct control of mask sparsity levels through a tunable sparse prior. Experiments on ERASER benchmark tasks demonstrate significant gains over norm-minimization techniques for both task performance and agreement with human rationales. Furthermore, we find that in the semi-supervised setting, a modest amount of gold rationales (25% of training examples) closes the gap with a model that uses the full input.Comment: EMNLP 2020 main track accepted pape

    TSXplain: Demystification of DNN Decisions for Time-Series using Natural Language and Statistical Features

    Full text link
    Neural networks (NN) are considered as black-boxes due to the lack of explainability and transparency of their decisions. This significantly hampers their deployment in environments where explainability is essential along with the accuracy of the system. Recently, significant efforts have been made for the interpretability of these deep networks with the aim to open up the black-box. However, most of these approaches are specifically developed for visual modalities. In addition, the interpretations provided by these systems require expert knowledge and understanding for intelligibility. This indicates a vital gap between the explainability provided by the systems and the novice user. To bridge this gap, we present a novel framework i.e. Time-Series eXplanation (TSXplain) system which produces a natural language based explanation of the decision taken by a NN. It uses the extracted statistical features to describe the decision of a NN, merging the deep learning world with that of statistics. The two-level explanation provides ample description of the decision made by the network to aid an expert as well as a novice user alike. Our survey and reliability assessment test confirm that the generated explanations are meaningful and correct. We believe that generating natural language based descriptions of the network's decisions is a big step towards opening up the black-box.Comment: Pre-prin

    Generative Adversarial Networks (GANs): What it can generate and What it cannot?

    Full text link
    In recent years, Generative Adversarial Networks (GANs) have received significant attention from the research community. With a straightforward implementation and outstanding results, GANs have been used for numerous applications. Despite the success, GANs lack a proper theoretical explanation. These models suffer from issues like mode collapse, non-convergence, and instability during training. To address these issues, researchers have proposed theoretically rigorous frameworks inspired by varied fields of Game theory, Statistical theory, Dynamical systems, etc. In this paper, we propose to give an appropriate structure to study these contributions systematically. We essentially categorize the papers based on the issues they raise and the kind of novelty they introduce to address them. Besides, we provide insight into how each of the discussed articles solves the concerned problems. We compare and contrast different results and put forth a summary of theoretical contributions about GANs with focus on image/visual applications. We expect this summary paper to give a bird's eye view to a person wishing to understand the theoretical progress in GANs so far
    corecore