5,579 research outputs found

    Random Prism: An Alternative to Random Forests.

    Get PDF
    Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting

    Preceding rule induction with instance reduction methods

    Get PDF
    A new prepruning technique for rule induction is presented which applies instance reduction before rule induction. An empirical evaluation records the predictive accuracy and size of rule-sets generated from 24 datasets from the UCI Machine Learning Repository. Three instance reduction algorithms (Edited Nearest Neighbour, AllKnn and DROP5) are compared. Each one is used to reduce the size of the training set, prior to inducing a set of rules using Clark and Boswell's modification of CN2. A hybrid instance reduction algorithm (comprised of AllKnn and DROP5) is also tested. For most of the datasets, pruning the training set using ENN, AllKnn or the hybrid significantly reduces the number of rules generated by CN2, without adversely affecting the predictive performance. The hybrid achieves the highest average predictive accuracy

    Computationally efficient induction of classification rules with the PMCRI and J-PMCRI frameworks

    Get PDF
    In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach.are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach

    Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

    Get PDF
    In this paper a combination of neuro-fuzzy classifiers for improved classification performance and reliability is considered. A general fuzzy min-max (GFMM) classifier with agglomerative learning algorithm is used as a main building block. An alternative approach to combining individual classifier decisions involving the combination at the classifier model level is proposed. The resulting classifier complexity and transparency is comparable with classifiers generated during a single crossvalidation procedure while the improved classification performance and reduced variance is comparable to the ensemble of classifiers with combined (averaged/voted) decisions. We also illustrate how combining at the model level can be used for speeding up the training of GFMM classifiers for large data sets

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles

    Collaborative decision making by ensemble rule based classification systems

    Get PDF

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper
    corecore