911 research outputs found

    Imputation methods for dealing with missing scores in biometric fusion

    Get PDF
    Biometrics refers to the automatic recognition of individuals based on their physical or behavioral characteristics. Multimodal biometric systems, which consolidate multiple biometric characteristics of the same person, can overcome several practical problems that occur in single modality biometric systems. While fusion can be accomplished at various levels in a multimodal biometric system, score level fusion is commonly used as it offers a good trade-off between fusion complexity and data availability. However, missing scores affect the implementation of most biometric fusion rules. While there are several techniques for handling missing data, the imputation scheme, which replaces missing values with predicted values, is preferred since this scheme can be followed by a standard fusion scheme designed for complete data. Performance of the following imputation methods are compared: Mean/Median Imputation, K-Nearest Neighbor (KNN) Imputation and Imputation via Maximum Likelihood Estimation (MLE). A novel imputation method based on Gaussian Mixture Model (GMM) assumption is also introduced and it exhibits markedly better fusion performance than the other methods because of its ability to preserve the local structure of the score distribution. Experiments on the MSU database assess the robustness of the schemes in handling missing scores at different training set sizes and various missing rates

    Sequential decision fusion for controlled detection errors

    Get PDF
    Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications

    Evaluation and performance prediction of multimodal biometric systems

    Get PDF
    Multibiometric systems fuse the evidence presented by different biometric sources in order to improve the matching accuracy of a biometric system. In such systems, information fusion can be performed at different levels; however, integration at the matching score level is the most commonly used approach due to the tradeoff between information content and accessibility. This work develops a tool in order to analyze the impact of various normalization schemes on the matching performance of score-level fusion algorithms. The tool permits the systematic evaluation of different fusion rules after employing normalizing and mapping the match scores of different modalities into a common domain. Furthermore, it provides a method to fit various parametric models to the score distribution and analyze the goodness of fit statistic based on the Chi-Squared and Kolmogorov-Smirnov tests. Experimental results on multiple datasets indicate the benefits of normalization, the role of parametric distributions and the variations in matching performance on different databases

    Multimodal biometric system for ECG, ear and iris recognition based on local descriptors

    Get PDF
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Combination of multiple information extracted from different biometric modalities in multimodal biometric recognition system aims to solve the different drawbacks encountered in a unimodal biometric system. Fusion of many biometrics has proposed such as face, fingerprint, iris…etc. Recently, electrocardiograms (ECG) have been used as a new biometric technology in unimodal and multimodal biometric recognition system. ECG provides inherent the characteristic of liveness of a person, making it hard to spoof compared to other biometric techniques. Ear biometrics present a rich and stable source of information over an acceptable period of human life. Iris biometrics have been embedded with different biometric modalities such as fingerprint, face and palm print, because of their higher accuracy and reliability. In this paper, a new multimodal biometric system based ECG-ear-iris biometrics at feature level is proposed. Preprocessing techniques including normalization and segmentation are applied to ECG, ear and iris biometrics. Then, Local texture descriptors, namely 1D-LBP (One D-Local Binary Patterns), Shifted-1D-LBP and 1D-MR-LBP (Multi-Resolution) are used to extract the important features from the ECG signal and convert the ear and iris images to a 1D signals. KNN and RBF are used for matching to classify an unknown user into the genuine or impostor. The developed system is validated using the benchmark ID-ECG and USTB1, USTB2 and AMI ear and CASIA v1 iris databases. The experimental results demonstrate that the proposed approach outperforms unimodal biometric system. A Correct Recognition Rate (CRR) of 100% is achieved with an Equal Error Rate (EER) of 0.5%

    Cost-Driven Hardware-Software Co-Optimization of Machine Learning Pipelines

    Full text link
    Researchers have long touted a vision of the future enabled by a proliferation of internet-of-things devices, including smart sensors, homes, and cities. Increasingly, embedding intelligence in such devices involves the use of deep neural networks. However, their storage and processing requirements make them prohibitive for cheap, off-the-shelf platforms. Overcoming those requirements is necessary for enabling widely-applicable smart devices. While many ways of making models smaller and more efficient have been developed, there is a lack of understanding of which ones are best suited for particular scenarios. More importantly for edge platforms, those choices cannot be analyzed in isolation from cost and user experience. In this work, we holistically explore how quantization, model scaling, and multi-modality interact with system components such as memory, sensors, and processors. We perform this hardware/software co-design from the cost, latency, and user-experience perspective, and develop a set of guidelines for optimal system design and model deployment for the most cost-constrained platforms. We demonstrate our approach using an end-to-end, on-device, biometric user authentication system using a $20 ESP-EYE board

    Smart aging : utilisation of machine learning and the Internet of Things for independent living

    Get PDF
    Smart aging utilises innovative approaches and technology to improve older adults’ quality of life, increasing their prospects of living independently. One of the major concerns the older adults to live independently is “serious fall”, as almost a third of people aged over 65 having a fall each year. Dementia, affecting nearly 9% of the same age group, poses another significant issue that needs to be identified as early as possible. Existing fall detection systems from the wearable sensors generate many false alarms; hence, a more accurate and secure system is necessary. Furthermore, there is a considerable gap to identify the onset of cognitive impairment using remote monitoring for self-assisted seniors living in their residences. Applying biometric security improves older adults’ confidence in using IoT and makes it easier for them to benefit from smart aging. Several publicly available datasets are pre-processed to extract distinctive features to address fall detection shortcomings, identify the onset of dementia system, and enable biometric security to wearable sensors. These key features are used with novel machine learning algorithms to train models for the fall detection system, identifying the onset of dementia system, and biometric authentication system. Applying a quantitative approach, these models are tested and analysed from the test dataset. The fall detection approach proposed in this work, in multimodal mode, can achieve an accuracy of 99% to detect a fall. Additionally, using 13 selected features, a system for detecting early signs of dementia is developed. This system has achieved an accuracy rate of 93% to identify a cognitive decline in the older adult, using only some selected aspects of their daily activities. Furthermore, the ML-based biometric authentication system uses physiological signals, such as ECG and Photoplethysmogram, in a fusion mode to identify and authenticate a person, resulting in enhancement of their privacy and security in a smart aging environment. The benefits offered by the fall detection system, early detection and identifying the signs of dementia, and the biometric authentication system, can improve the quality of life for the seniors who prefer to live independently or by themselves

    Feature-level fusion in multimodal biometrics

    Get PDF
    Multimodal biometric systems utilize the evidence presented by multiple biometric modalities (e.g., face and fingerprint, multiple fingers of a user, multiple impressions of a single finger, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in three distinct levels [1]: (i) feature set level; (ii) match score level; and (iii) decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. A novel technique to perform fusion at the feature level by considering two biometric modalities---face and hand geometry, is presented in this paper. Also, a new distance metric conscripted as the Thresholded Absolute Distance (TAD) is used to help reinforce the system\u27s robustness towards noise. Finally, two techniques are proposed to consolidate information available after match score fusion, with that obtained after feature set fusion. These techniques further enhance the performance of the multimodal biometric system and help find an approximate upper bound on its performance. Results indicate that the proposed techniques can lead to substantial improvement in multimodal matching abilities

    Decision-Making with Heterogeneous Sensors - A Copula Based Approach

    Get PDF
    Statistical decision making has wide ranging applications, from communications and signal processing to econometrics and finance. In contrast to the classical one source-one receiver paradigm, several applications have been identified in the recent past that require acquiring data from multiple sources or sensors. Information from the multiple sensors are transmitted to a remotely located receiver known as the fusion center which makes a global decision. Past work has largely focused on fusion of information from homogeneous sensors. This dissertation extends the formulation to the case when the local sensors may possess disparate sensing modalities. Both the theoretical and practical aspects of multimodal signal processing are considered. The first and foremost challenge is to \u27adequately\u27 model the joint statistics of such heterogeneous sensors. We propose the use of copula theory for this purpose. Copula models are general descriptors of dependence. They provide a way to characterize the nonlinear functional relationships between the multiple modalities, which are otherwise difficult to formalize. The important problem of selecting the `best\u27 copula function from a given set of valid copula densities is addressed, especially in the context of binary hypothesis testing problems. Both, the training-testing paradigm, where a training set is assumed to be available for learning the copula models prior to system deployment, as well as generalized likelihood ratio test (GLRT) based fusion rule for the online selection and estimation of copula parameters are considered. The developed theory is corroborated with extensive computer simulations as well as results on real-world data. Sensor observations (or features extracted thereof) are most often quantized before their transmission to the fusion center for bandwidth and power conservation. A detection scheme is proposed for this problem assuming unifom scalar quantizers at each sensor. The designed rule is applicable for both binary and multibit local sensor decisions. An alternative suboptimal but computationally efficient fusion rule is also designed which involves injecting a deliberate disturbance to the local sensor decisions before fusion. The rule is based on Widrow\u27s statistical theory of quantization. Addition of controlled noise helps to \u27linearize\u27 the higly nonlinear quantization process thus resulting in computational savings. It is shown that although the introduction of external noise does cause a reduction in the received signal to noise ratio, the proposed approach can be highly accurate when the input signals have bandlimited characteristic functions, and the number of quantization levels is large. The problem of quantifying neural synchrony using copula functions is also investigated. It has been widely accepted that multiple simultaneously recorded electroencephalographic signals exhibit nonlinear and non-Gaussian statistics. While the existing and popular measures such as correlation coefficient, corr-entropy coefficient, coh-entropy and mutual information are limited to being bivariate and hence applicable only to pairs of channels, measures such as Granger causality, even though multivariate, fail to account for any nonlinear inter-channel dependence. The application of copula theory helps alleviate both these limitations. The problem of distinguishing patients with mild cognitive impairment from the age-matched control subjects is also considered. Results show that the copula derived synchrony measures when used in conjunction with other synchrony measures improve the detection of Alzheimer\u27s disease onset
    • …
    corecore