5,807 research outputs found

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    Genetic Algorithm and its Variants: Theory and Applications

    Get PDF
    The Genetic Algorithm is a popular optimization technique which is bio-inspired and is based on the concepts of natural genetics and natural selection theories proposed by Charles Darwin. The Algorithm functions on three basic genetic operators of selection, crossover and mutation. Based on the types of these operators GA has many variants like Real coded GA, Binary coded GA, Sawtooth GA, Micro GA, Improved GA, Differential Evolution GA. This paper discusses a few of the forms of GA and applies the techniques to the problem of Function optimization and System Identification. The paper makes a comparative analysis of the advantages and disadvantages of the different types of GA. The computer simulations illustrate the results. It also makes a comparison between the GA technique and Incremental LMS algorithm for System Identification

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications
    corecore