126,051 research outputs found

    Using Random Forests to Describe Equity in Higher Education: A Critical Quantitative Analysis of Utah’s Postsecondary Pipelines

    Get PDF
    The following work examines the Random Forest (RF) algorithm as a tool for predicting student outcomes and interrogating the equity of postsecondary education pipelines. The RF model, created using longitudinal data of 41,303 students from Utah\u27s 2008 high school graduation cohort, is compared to logistic and linear models, which are commonly used to predict college access and success. Substantially, this work finds High School GPA to be the best predictor of postsecondary GPA, whereas commonly used ACT and AP test scores are not nearly as important. Each model identified several demographic disparities in higher education access, most significantly the effects of individual-level economic disadvantage. District- and school-level factors such as the proportion of Low Income students and the proportion of Underrepresented Racial Minority (URM) students were important and negatively associated with postsecondary success. Methodologically, the RF model was able to capture non-linearity in the predictive power of school- and district-level variables, a key finding which was undetectable using linear models. The RF algorithm outperforms logistic models in prediction of student enrollment, performs similarly to linear models in prediction of postsecondary GPA, and excels both models in its descriptions of non-linear variable relationships. RF provides novel interpretations of data, challenges conclusions from linear models, and has enormous potential to further the literature around equity in postsecondary pipelines

    Prediction with Dimension Reduction of Multiple Molecular Data Sources for Patient Survival

    Full text link
    Predictive modeling from high-dimensional genomic data is often preceded by a dimension reduction step, such as principal components analysis (PCA). However, the application of PCA is not straightforward for multi-source data, wherein multiple sources of 'omics data measure different but related biological components. In this article we utilize recent advances in the dimension reduction of multi-source data for predictive modeling. In particular, we apply exploratory results from Joint and Individual Variation Explained (JIVE), an extension of PCA for multi-source data, for prediction of differing response types. We conduct illustrative simulations to illustrate the practical advantages and interpretability of our approach. As an application example we consider predicting survival for Glioblastoma Multiforme (GBM) patients from three data sources measuring mRNA expression, miRNA expression, and DNA methylation. We also introduce a method to estimate JIVE scores for new samples that were not used in the initial dimension reduction, and study its theoretical properties; this method is implemented in the R package R.JIVE on CRAN, in the function 'jive.predict'.Comment: 11 pages, 9 figure
    • …
    corecore