238 research outputs found

    EKF-based parameter identification of multi-rotor unmanned aerial vehiclesmodels

    Get PDF
    This work presents a method for estimating the model parameters of multi-rotor unmanned aerial vehicles by means of an extended Kalman filter. Different from test-bed based identification methods, the proposed approach estimates all the model parameters of a multi-rotor aerial vehicle, using a single online estimation process that integrates measurements that can be obtained directly from onboard sensors commonly available in this kind of UAV. In order to develop the proposed method, the observability property of the system is investigated by means of a nonlinear observability analysis. First, the dynamic models of three classes of multi-rotor aerial vehicles are presented. Then, in order to carry out the observability analysis, the state vector is augmented by considering the parameters to be identified as state variables with zero dynamics. From the analysis, the sets of measurements from which the model parameters can be estimated are derived. Furthermore, the necessary conditions that must be satisfied in order to obtain the observability results are given. An extensive set of computer simulations is carried out in order to validate the proposed method. According to the simulation results, it is feasible to estimate all the model parameters of a multi-rotor aerial vehicle in a single estimation process by means of an extended Kalman filter that is updated with measurements obtained directly from the onboard sensors. Furthermore, in order to better validate the proposed method, the model parameters of a custom-built quadrotor were estimated from actual flight log data. The experimental results show that the proposed method is suitable to be practically appliedPeer ReviewedPostprint (published version

    Autonomous Flight in Unknown Indoor Environments

    Get PDF
    http://multi-science.metapress.com/content/80586kml376k2711/This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are already commodities on ground vehicles, air vehicles seeking the same performance face unique challenges. In this paper, we describe the difficulties in achieving fully autonomous helicopter flight, highlighting the differences between ground and helicopter robots that make it difficult to use algorithms that have been developed for ground robots. We then provide an overview of our solution to the key problems, including a multilevel sensing and control hierarchy, a high-speed laser scan-matching algorithm, an EKF for data fusion, a high-level SLAM implementation, and an exploration planner. Finally, we show experimental results demonstrating the helicopter's ability to navigate accurately and autonomously in unknown environments.National Science Foundation (U.S.) (NSF Division of Information and Intelligent Systems under grant # 0546467)United States. Army Research Office (ARO MAST CTA)Singapore. Armed Force

    GPS based position control and waypoint navigation of a quad tilt-wing UAV

    Get PDF
    Unmanned aerial vehicles (UAV) are becoming increasingly capable nowadays and the civilian applications and the military tasks that can be carried out by these vehicles are far more critical than before. There have been remarkable advances in the design and development of UAVs. They are equipped with various sensors which make them capable of accomplishing missions in unconstrained environments which are dangerous or effortful for manned aircrafts. Recently, significant interest in unmanned aerial vehicles has directed researchers towards navigation problem of flying vehicles. This thesis work focuses on GPS based position control and waypoint navigation of a quad tilt-wing unmanned aerial vehicle (SUAVI: Sabanci University Unmanned Aerial Vehicle). The vehicle is capable of vertical take-off and landing (VTOL). It can also fly horizontally due to its tilt-wing structure. Mechanical and aerodynamic designs are first outlined. A nonlinear mathematical model expressed in a hybrid frame is then obtained using Newton-Euler formulation which also includes aerodynamics effects such as wind and gusts. Extended Kalman filtering (EKF) using raw IMU measurements is employed to obtain reliable orientation estimates which is crucial for attitude stabilization of the aerial vehicle. A high-level acceleration controller which utilizes GPS data produces roll and pitch references for the low-level attitude controllers for hovering and trajectory tracking of the aerial vehicle. The nonlinear dynamic equations of the vehicle are linearized around nominal operating points in hovering conditions and gravity compensated PID controllers are designed for position and attitude control. Simulations and several real flight experiments demonstrate success of the developed position control algorithms

    MEMS ์„ผ์„œ๋ฅผ ํ™œ์šฉํ•œ ๋ฉ€ํ‹ฐ๋กœํ„ฐํ˜• ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ์ €๋น„์šฉ ๋น„ํ–‰์ œ์–ด์‹œ์Šคํ…œ์˜ ์„ค๊ณ„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2019. 8. ์—ฌ์žฌ์ต.ํ”ํžˆ ๋“œ๋ก (Drone)์ด๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๋ฉ€ํ‹ฐ๋กœํ„ฐํ˜• ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ์ €๋ ดํ•˜๊ณ  ์กฐ์ข…ํ•˜๊ธฐ ์‰ฌ์šฐ๋ฉฐ ๊ฐ„๋‹จํ•œ ๊ตฌ์กฐ์™€ ์ˆ˜์ง ์ด์ฐฉ๋ฅ™์ด ๊ฐ€๋Šฅํ•˜์—ฌ ๊ตฐ์‚ฌ์ ์ธ ์šฉ๋„๋ฅผ ๋น„๋กฏํ•˜์—ฌ ์ƒ์—…์ ์ธ ์šฉ๋„๋กœ ๋„๋ฆฌ ์“ฐ์ด๊ณ  ์žˆ๋‹ค. ๋ฉ€ํ‹ฐ๋กœํ„ฐํ˜• ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ๊ฐ€์†๋„ ์„ผ์„œ, ์ž์ด๋กœ์Šค์ฝ”ํ”„ ์„ผ์„œ๋ฅผ ํฌํ•จํ•˜๋Š” ๊ด€์„ฑ ์ธก์ • ์œ ๋‹›(IMU)์„ ์ด์šฉํ•˜์—ฌ ์ง€ํ‘œ๋ฉด์— ๋Œ€ํ•œ ์ž์„ธ๋ฅผ ์ธก์ •ํ•˜์—ฌ ๊ฐ ๋ชจํ„ฐ์˜ ํšŒ์ „์†๋„๋ฅผ ์ œ์–ดํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋น„ํ–‰ํ•˜๋ฉฐ, ๋น„ํ–‰ ๋ฐฉํ–ฅ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์ง€์ž๊ธฐ ์„ผ์„œ์™€ ๊ณ ๋„๋ฅผ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์••๊ณ„๋ฅผ ๋‚ด์žฅํ•œ๋‹ค. ๋น„ํ–‰์ฒด์— ํƒ‘์žฌ๋˜๋Š” ๋น„ํ–‰์ œ์–ด์œ ๋‹›(Flight Control Unit, FCU)์€ ์ด๋Ÿฌํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ์™€ ์กฐ์ข… ๋ช…๋ น์„ ์ด์šฉํ•˜์—ฌ ๊ฐ ๋ชจํ„ฐ๋ฅผ ์ œ์–ดํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๊ธฐ์กด์˜ ๋น„ํ–‰ ์ œ์–ด ์‹œ์Šคํ…œ์€ ํ•˜๋‚˜ ์ด์ƒ์˜ 32-bit ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ ์ด์— ๋”ฐ๋ผ ๋น„ํ–‰์ œ์–ด๋ฅผ ์œ„ํ•œ ํŽŒ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์žˆ์–ด ํšŒ๋กœ ๋ฐ ํŒจํ„ด ์„ค๊ณ„ ๋ฐ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ™˜๊ฒฝ(SDK)์„ ๊ตฌ์„ฑํ•˜๋Š”๋ฐ ์žˆ์–ด ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ์ธ๋ ฅ, ๋น„์šฉ์„ ํ•„์š”๋กœ ํ•˜์—ฌ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ฐ€๊ฒฉ์ด ์ €๋ ดํ•˜์ง€ ์•Š๋‹ค. ๋˜ํ•œ ์ž‘์€ ํฌ๊ธฐ์˜ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์— ์‚ฌ์šฉ๋˜๋Š” ์ €๋ ดํ•œ ๋น„ํ–‰์ œ์–ด์œ ๋‹›์€ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ํ™•์žฅ์„ฑ์— ์ œ์•ฝ์ด ์žˆ์–ด ํ•˜๋‚˜์˜ ์ œ์–ด ์‹œ์Šคํ…œ์œผ๋กœ ํ•˜๋‚˜์˜ ๋น„ํ–‰์ฒด ๋ชจ๋ธ์—๋งŒ ์ ์šฉํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋น ๋ฅด๊ณ  ๊ฐ„ํŽธํ•˜๊ฒŒ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ €๋ ดํ•˜๊ณ  ๊ตฌํ•˜๊ธฐ ์‰ฌ์šด 8-bit AVR ํ”„๋กœ์„ธ์„œ์™€ MEMS ์„ผ์„œ, C/C++์–ธ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„ํ–‰์ œ์–ด์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ ๊ทธ ๊ฒฐ๊ณผ ํ™•์žฅ์„ฑ์„ ๊ฐ–์ถ”๋ฉด์„œ ๊ฐ€๊ฒฉ์ด ์ €๋ ดํ•˜๋ฉด์„œ ํšจ์œจ์ ์ธ ๋น„ํ–‰ ์ œ์–ด ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ถ€์กฑํ•œ 8-bit ํ”„๋กœ์„ธ์„œ์˜ ์„ฑ๋Šฅ์€ ํ”„๋กœ์„ธ์„œ์˜ ์ˆ˜๋Ÿ‰์„ ๋Š˜๋ฆฌ๋Š” ๋ณ‘๋ ฌ ์ปดํ“จํŒ… ๋ฐฉ๋ฒ•์œผ๋กœ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ ์ƒ๋ณดํ•„ํ„ฐ์˜ ๊ฐ„๊ฒฐํ•œ ๊ตฌ์กฐ๋กœ ์ธํ•ด 8-bit ํ”„๋กœ์„ธ์„œ์˜ ๋‚ฎ์€ ์ปดํ“จํŒ… ์„ฑ๋Šฅ์œผ๋กœ๋„ ์ดˆ๋‹น ์•ฝ 250Hz์˜ ์ œ์–ด ์ฃผ๊ธฐ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ž์„ธ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ Cascade controller๋ฅผ ์„ ํƒํ•˜์—ฌ ์™ธ๋ž€์— ๊ฐ•ํ•˜๋ฉฐ ๋น ๋ฅธ ์ œ์–ด ์†๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ง„๋™์ด ์ƒ๋Œ€์ ์œผ๋กœ ํฐ ํŒœ ์‚ฌ์ด์ฆˆ์˜ ์ฟผ๋“œ๋กœํ„ฐ UAV์—์„œ๋„ ์•ˆ์ •์ ์ธ ๋น„ํ–‰ ์„ฑ๋Šฅ์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.1. Introduction ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 1 1. 1. About Research ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 4 1. 2. Basic Theory ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 6 1. 2. 1. Attitude Estimation ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 8 1. 2. 2. Cascade PID Controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 14 1. 3. Research Goal ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 17 2. Hardware Design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 18 2. 1. PCB Design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 20 2. 1. 1. Design of Flight Controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 20 2. 1. 2. Design of PMU for BLDC System ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 29 2. 2. Body Frame Design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 33 2. 2. 1. DC Motor Powered Quadcopter ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 34 2. 2. 2. BLDC Motor Powered Hexacopter ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 36 3. Software Design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 38 3. 1. Flight Software Design ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 38 3. 1. 1. Attitude Reference System ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 39 3. 1. 2. Cascade PID Controller ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 44 3. 1. 3. Bluetooth-based Control System ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 46 3. 2. IMU & Attitude Reference System ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 51 3. 2. Attitude Control Performance ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 51 4. Conclusion ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 53 ์ฐธ๊ณ ๋ฌธํ—Œ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 55 Abstract ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 57Maste

    Composite prototyping and vision based hierarchical control of a quad tilt-wing UAV

    Get PDF
    As the attention to unmanned systems is increasing, unmanned aerial vehicles (UAVs) are becoming more popular based on the rapid advances in technology and growth in operational experience. The main motivation in this vast research field is to diminish the human driven tasks by employing UAVs in critical civilian and military tasks such as traffic monitoring, disasters, surveillance, reconnaissance and border security. Researchers have been developing featured UAVs with intelligent navigation and control systems on more efficient designs aiming to increase the functionality, flight time and maneuverability. This thesis focuses on the composite prototyping and vision based hierarchical control of a quad tilt-wing aerial vehicle (SUAVI: Sabanci University Unmanned Aerial VehIcle). With the tilt-wing mechanism, SUAVI is one of the most challenging UAV concepts by combining advantages of vertical take-off and landing (VTOL) and horizontal flight. Various composite materials are tested for their mechanical properties and the most suitable one is used for prototyping of the aerial vehicle. A hierarchical control structure which consists of high-level and low-level controllers is developed. A vision based high-level controller generates attitude references for the low-level controllers. A Kalman filter fuses data from low-cost inertial sensors to obtain reliable orientation information. Low-level controllers are typically gravity compensated PID controllers. An image based visual servoing (IBVS) algorithm for VTOL, hovering and trajectory tracking is successfully implemented in simulations. Real flight tests demonstrate satisfactory performance of the developed control algorithms
    • โ€ฆ
    corecore