4,091 research outputs found

    Using Hierarchical Data Mining to Characterize Performance of Wireless System Configurations

    Full text link
    This paper presents a statistical framework for assessing wireless systems performance using hierarchical data mining techniques. We consider WCDMA (wideband code division multiple access) systems with two-branch STTD (space time transmit diversity) and 1/2 rate convolutional coding (forward error correction codes). Monte Carlo simulation estimates the bit error probability (BEP) of the system across a wide range of signal-to-noise ratios (SNRs). A performance database of simulation runs is collected over a targeted space of system configurations. This database is then mined to obtain regions of the configuration space that exhibit acceptable average performance. The shape of the mined regions illustrates the joint influence of configuration parameters on system performance. The role of data mining in this application is to provide explainable and statistically valid design conclusions. The research issue is to define statistically meaningful aggregation of data in a manner that permits efficient and effective data mining algorithms. We achieve a good compromise between these goals and help establish the applicability of data mining for characterizing wireless systems performance

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    A Full Wave Electromagnetic Framework for Optimization and Uncertainty Quantification of Communication Systems in Underground Mine Environments

    Full text link
    Wireless communication, sensing, and tracking systems in mine environments are essential for protecting miners’ safety and daily operations. The design, deployment, and post-event reconfiguration of such systems greatly benefits from electromagnetic (EM) frameworks that can statistically analyze and optimize the wireless systems in realistic mine environments. This thesis proposes such a framework by developing two fast and efficient full-wave EM simulators and coupling them with a modern optimization algorithm and an efficient uncertainty quantification (UQ) method to synthesize system configurations and produce statistical insights. The first simulator is a fast multipole method – fast Fourier transform (FMM-FFT) accelerated surface integral equation (SIE) simulator. It relies on Muller and combined fields SIEs to account for scattering from mine walls and conductors, respectively. During the iterative solution of the SIE system, the computational and memory costs are reduced by using the FMM-FFT scheme. The memory costs are further reduced by compressing large data structures via singular value and Tucker decomposition. The second simulator is a domain decomposition (DD)-based SIE simulator. It first divides the physical domain of a mine tunnel or gallery into subdomains and then characterizes EM wave propagation in each subdomain separately. Finally, the DD-based SIE simulator assembles the solutions of subdomains and solves an inter-domain system using an efficient subdomain-combining scheme. While the DD-based SIE simulator is faster and more memory-efficient than the FMM-FFT accelerated SIE simulator when characterizing EM wave propagation in electrically large mine environments, it does not apply to certain scenarios that the FMM-FFT accelerated SIE simulators can handle. The optimization algorithm and UQ method that are coupled with the EM simulators are the dividing rectangles (DIRECT) algorithm and the high dimensional model representation (HDMR)-enhanced multi-element probabilistic collocation (ME-PC) method, respectively. The DIRECT algorithm is a Lipschitzian optimization method but does not require the knowledge of the Lipschitz constant. It performs a series of moves that explore the behavior of the objective function at a set of points in the carefully picked sub-regions of the search space. The HDMR-enhanced ME-PC method permits the accurate and efficient construction of surrogate models for EM observables in high dimensions. The HDMR expansion expresses the observable as finite sums of component functions that represent independent and combined contributions of random variables to the observable and hence reduces the complexity of UQ by including only the most significant component functions to minimize the computational cost of building the surrogate model. This research numerically validated and verified the two EM simulators and demonstrated the efficiency and applicability of the EM framework via its application to optimization and UQ problems in large and realistic mine environments.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146028/1/wtsheng_1.pd

    Generalized Activity Assessment computed fully distributed within a Wireless Body Area Network

    Get PDF
    Currently available wearables are usually based on a single sensor node with integrated capabilities for classifying different activities. The next generation of cooperative wearables could be able to identify not only activities, but also to evaluate them qualitatively using the data of several sensor nodes attached to the body, to provide detailed feedback for the improvement of the execution. Especially within the application domains of sports and health-care, such immediate feedback to the execution of body movements is crucial for (re-)learning and improving motor skills. To enable such systems for a broad range of activities, generalized approaches for human motion assessment within sensor networks are required. In this paper, we present a generalized trainable activity assessment chain (AAC) for the online assessment of periodic human activity within a wireless body area network. AAC evaluates the execution of separate movements of a prior trained activity on a fine-grained quality scale. We connect qualitative assessment with human knowledge by projecting the AAC on the hierarchical decomposition of motion performed by the human body as well as establishing the assessment on a kinematic evaluation of biomechanically distinct motion fragments. We evaluate AAC in a real-world setting and show that AAC successfully delimits the movements of correctly performed activity from faulty executions and provides detailed reasons for the activity assessment
    • …
    corecore