4,854 research outputs found

    Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data

    Get PDF
    In this work, two methods based on statistical models that take into account the temporal changes in the electroencephalographic (EEG) signal are proposed for asynchronous brain-computer interfaces (BCI) based on imaginary motor tasks. Unlike the current approaches to asynchronous BCI systems that make use of windowed versions of the EEG data combined with static classifiers, the methods proposed here are based on discriminative models that allow sequential labeling of data. In particular, the two methods we propose for asynchronous BCI are based on conditional random fields (CRFs) and latent dynamic CRFs (LDCRFs), respectively. We describe how the asynchronous BCI problem can be posed as a classification problem based on CRFs or LDCRFs, by defining appropriate random variables and their relationships. CRF allows modeling the extrinsic dynamics of data, making it possible to model the transitions between classes, which in this context correspond to distinct tasks in an asynchronous BCI system. On the other hand, LDCRF goes beyond this approach by incorporating latent variables that permit modeling the intrinsic structure for each class and at the same time allows modeling extrinsic dynamics. We apply our proposed methods on the publicly available BCI competition III dataset V as well as a data set recorded in our laboratory. Results obtained are compared to the top algorithm in the BCI competition as well as to methods based on hierarchical hidden Markov models (HHMMs), hierarchical hidden CRF (HHCRF), neural networks based on particle swarm optimization (IPSONN) and to a recently proposed approach based on neural networks and fuzzy theory, the S-dFasArt. Our experimental analysis demonstrates the improvements provided by our proposed methods in terms of classification accuracy

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Automatic recognition of fingerspelled words in British Sign Language

    Get PDF
    We investigate the problem of recognizing words from video, fingerspelled using the British Sign Language (BSL) fingerspelling alphabet. This is a challenging task since the BSL alphabet involves both hands occluding each other, and contains signs which are ambiguous from the observer’s viewpoint. The main contributions of our work include: (i) recognition based on hand shape alone, not requiring motion cues; (ii) robust visual features for hand shape recognition; (iii) scalability to large lexicon recognition with no re-training. We report results on a dataset of 1,000 low quality webcam videos of 100 words. The proposed method achieves a word recognition accuracy of 98.9%

    Latent-Dynamic Discriminative Models for Continuous Gesture Recognition

    Get PDF
    Many problems in vision involve the prediction of a class label for each frame in an unsegmented sequence. In this paper we develop a discriminative framework for simultaneous sequence segmentation and labeling which can capture both intrinsic and extrinsic class dynamics. Our approach incorporates hidden state variables which model the sub-structure of a class sequence and learn the dynamics between class labels. Each class label has a disjoint set of associated hidden states, which enables efficient training and inference in our model. We evaluated our method on the task of recognizing human gestures from unsegmented video streams and performed experiments on three different datasets of head and eye gestures. Our results demonstrate that our model for visual gesture recognition outperform models based on Support Vector Machines, Hidden Markov Models, and Conditional Random Fields
    corecore