342 research outputs found

    On the Complexity of Role Colouring Planar Graphs, Trees and Cographs

    Full text link
    We prove several results about the complexity of the role colouring problem. A role colouring of a graph GG is an assignment of colours to the vertices of GG such that two vertices of the same colour have identical sets of colours in their neighbourhoods. We show that the problem of finding a role colouring with 1<k<n1< k <n colours is NP-hard for planar graphs. We show that restricting the problem to trees yields a polynomially solvable case, as long as kk is either constant or has a constant difference with nn, the number of vertices in the tree. Finally, we prove that cographs are always kk-role-colourable for 1<k≤n1<k\leq n and construct such a colouring in polynomial time

    Phase Transitions in Edge-Weighted Exponential Random Graphs: Near-Degeneracy and Universality

    Full text link
    Conventionally used exponential random graphs cannot directly model weighted networks as the underlying probability space consists of simple graphs only. Since many substantively important networks are weighted, this limitation is especially problematic. We extend the existing exponential framework by proposing a generic common distribution for the edge weights. Minimal assumptions are placed on the distribution, that is, it is non-degenerate and supported on the unit interval. By doing so, we recognize the essential properties associated with near-degeneracy and universality in edge-weighted exponential random graphs.Comment: 15 pages, 4 figures. This article extends arXiv:1607.04084, which derives general formulas for the normalization constant and characterizes phase transitions in exponential random graphs with uniformly distributed edge weights. The present article places minimal assumptions on the edge-weight distribution, thereby recognizing essential properties associated with near-degeneracy and universalit
    • …
    corecore