150,333 research outputs found

    Evaluation of distances between color image segmentations

    Get PDF
    Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), 2005, Estoril (Portugal)We illustrate the problem of comparing images by means of their color segmentations. A group of seven distances are proposed within the frame of the Integrated Region Matching distance and the employ of Multivariate Gaussian Distributions (MGD) for the color description of image regions. The performance of these distances is examined in tasks such as image retrieval and object recognition using the two segmentation algorithms in [1] and [2]. The best overall results are obtained for both tasks using the graph–partition approach along with the Fréchet distance, outperforming other distances in comparing MGDs.Peer Reviewe

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    Graph edit distance from spectral seriation

    Get PDF
    This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems

    MASCOT: a mechanism for attention-based scale-invariant object recognition in images

    Get PDF
    The efficient management of large multimedia databases requires the development of new techniques to process, characterize, and search for multimedia objects. Especially in the case of image data, the rapidly growing amount of documents prohibits a manual description of the images’ content. Instead, the automated characterization is highly desirable to support annotation and retrieval of digital images. However, this is a very complex and still unsolved task. To contribute to a solution of this problem, we have developed a mechanism for recognizing objects in images based on the query by example paradigm. Therefore, the most salient image features of an example image representing the searched object are extracted to obtain a scale-invariant object model. The use of this model provides an efficient and robust strategy for recognizing objects in images independently of their size. Further applications of the mechanism are classical recognition tasks such as scene decomposition or object tracking in video sequences
    • …
    corecore