31,195 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Optimizations of Patch Antenna Arrays Using Genetic Algorithms Supported by the Multilevel Fast Multipole Algorithm

    Get PDF
    We present optimizations of patch antenna arrays using genetic algorithms and highly accurate full-wave solutions of the corresponding radiation problems with the multilevel fast multipole algorithm (MLFMA). Arrays of finite extent are analyzed by using MLFMA, which accounts for all mutual couplings between array elements efficiently and accurately. Using the superposition principle, the number of solutions required for the optimization of an array is reduced to the number of array elements, without resorting to any periodicity and similarity assumptions. Based on numerical experiments, genetic optimizations are improved by considering alternative mutation, crossover, and elitism mechanisms. We show that the developed optimization environment based on genetic algorithms and MLFMA provides efficient and effective optimizations of antenna excitations, which cannot be obtained with array-factor approaches, even for relatively simple arrays with identical elements

    Search Heuristics, Case-Based Reasoning and Software Project Effort Prediction

    Get PDF
    This paper reports on the use of search techniques to help optimise a case-based reasoning (CBR) system for predicting software project effort. A major problem, common to ML techniques in general, has been dealing with large numbers of case features, some of which can hinder the prediction process. Unfortunately searching for the optimal feature subset is a combinatorial problem and therefore NP-hard. This paper examines the use of random searching, hill climbing and forward sequential selection (FSS) to tackle this problem. Results from examining a set of real software project data show that even random searching was better than using all available for features (average error 35.6% rather than 50.8%). Hill climbing and FSS both produced results substantially better than the random search (15.3 and 13.1% respectively), but FSS was more computationally efficient. Providing a description of the fitness landscape of a problem along with search results is a step towards the classification of search problems and their assignment to optimum search techniques. This paper attempts to describe the fitness landscape of this problem by combining the results from random searches and hill climbing, as well as using multi-dimensional scaling to aid visualisation. Amongst other findings, the visualisation results suggest that some form of heuristic-based initialisation might prove useful for this problem

    Nature-Inspired Adaptive Architecture for Soft Sensor Modelling

    Get PDF
    This paper gives a general overview of the challenges present in the research field of Soft Sensor building and proposes a novel architecture for building of Soft Sensors, which copes with the identified challenges. The architecture is inspired and making use of nature-related techniques for computational intelligence. Another aspect, which is addressed by the proposed architecture, are the identified characteristics of the process industry data. The data recorded in the process industry consist usually of certain amount of missing values or sample exceeding meaningful values of the measurements, called data outliers. Other process industry data properties causing problems for the modelling are the collinearity of the data, drifting data and the different sampling rates of the particular hardware sensors. It is these characteristics which are the source of the need for an adaptive behaviour of Soft Sensors. The architecture reflects this need and provides mechanisms for the adaptation and evolution of the Soft Sensor at different levels. The adaptation capabilities are provided by maintaining a variety of rather simple models. These particular models, called paths in terms of the architecture, can for example focus on different partition of the input data space, or provide different adaptation speeds to changes in the data. The actual modelling techniques involved into the architecture are data-driven computational learning approaches like artificial neural networks, principal component regression, etc

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A Genetic Programming Approach to Geometrical Digital Content Modeling in Web Oriented Applications

    Get PDF
    The paper presents the advantages of using genetic techniques in web oriented problems. The specific area of genetic programming applications that paper approaches is content modeling. The analyzed digital content is formed through the accumulation of targeted geometrical structured entities that have specific characteristics and behavior. The accumulated digital content is analyzed and specific features are extracted in order to develop an analysis system through the use of genetic programming. An experiment is presented which evolves a model based on specific features of each geometrical structured entity in the digital content base. The results show promising expectations with a low error rate which provides fair approximations related to analyzed geometrical structured entities.Genetic Algorithm, Genetic Programming, Fitness, Geometrical Structured Entities, Analysis

    Optimal Wideband LPDA Design for Efficient Multimedia Content Delivery over Emerging Mobile Computing Systems

    Get PDF
    An optimal synthesis of a wideband Log-Periodic Dipole Array (LPDA) is introduced in the present study. The LPDA optimization is performed under several requirements concerning the standing wave ratio, the forward gain, the gain flatness, the front-to-back ratio and the side lobe level, over a wide frequency range. The LPDA geometry that complies with the above requirements is suitable for efficient multimedia content delivery. The optimization process is accomplished by applying a recently introduced method called Invasive Weed Optimization (IWO). The method has already been compared to other evolutionary methods and has shown superiority in solving complex non-linear problems in telecommunications and electromagnetics. In the present study, the IWO method has been chosen to optimize an LPDA for operation in the frequency range 800-3300 MHz. Due to its excellent performance, the LPDA can effectively be used for multimedia content reception over future mobile computing systems

    Hybridation of Bayesian networks and evolutionary algorithms for multi-objective optimization in an integrated product design and project management context

    Get PDF
    A better integration of preliminary product design and project management processes at early steps of system design is nowadays a key industrial issue. Therefore, the aim is to make firms evolve from classical sequential approach (first product design the project design and management) to new integrated approaches. In this paper, a model for integrated product/project optimization is first proposed which allows taking into account simultaneously decisions coming from the product and project managers. However, the resulting model has an important underlying complexity, and a multi-objective optimization technique is required to provide managers with appropriate scenarios in a reasonable amount of time. The proposed approach is based on an original evolutionary algorithm called evolutionary algorithm oriented by knowledge (EAOK). This algorithm is based on the interaction between an adapted evolutionary algorithm and a model of knowledge (MoK) used for giving relevant orientations during the search process. The evolutionary operators of the EA are modified in order to take into account these orientations. The MoK is based on the Bayesian Network formalism and is built both from expert knowledge and from individuals generated by the EA. A learning process permits to update probabilities of the BN from a set of selected individuals. At each cycle of the EA, probabilities contained into the MoK are used to give some bias to the new evolutionary operators. This method ensures both a faster and effective optimization, but it also provides the decision maker with a graphic and interactive model of knowledge linked to the studied project. An experimental platform has been developed to experiment the algorithm and a large campaign of tests permits to compare different strategies as well as the benefits of this novel approach in comparison with a classical EA
    • 

    corecore