2,452 research outputs found

    Towards Wind Energy-based Charging Stations: A Review of Optimization Methods

    Get PDF
    Due to the growing importance of renewable sources in sustainable energy systems, the strategic deployment of robust optimization techniques plays a crucial role in the design of Electric Vehicle Charging Stations (EVCSs). These stations need to smoothly incorporate renewable sources, ensuring optimal energy utilization. This study provides a comprehensive overview of the methodologies and approaches employed in the enhancement of wind energy based EVCSs. The aim is to discern the most efficacious techniques for optimizing charging stations. Researchers engage diverse strategies and methodologies in the realm of sizing and optimization, encompassing a spectrum of algorithmic implementations and software solutions. Evidently, each algorithm or software application bears distinctive merits and demerits. Singular reliance on a solitary algorithm or software for charging utility optimization is discerned to be potentially limiting. The investigation reveals that achieving better results in Electric Vehicle Charging Station (EVCS) optimization is facilitated by the collaborative use of multiple algorithms like GA, PSO, and ACO, among others, or software tools like Homer or RETScreen

    An energy-aware algorithm for electric vehicle infrastructures in smart cities

    Full text link
    [EN] The deployment of a charging infrastructure to cover the increasing demand of electric vehicles (EVs) has become a crucial problem in smart cities. Additionally, the penetration of the EV will increase once the users can have enough charging stations. In this work, we tackle the problem of locating a set of charging stations in a smart city considering heterogeneous data sources such as open data city portals, geo-located social network data, and energy transformer substations. We use a multi-objective genetic algorithm to optimize the charging station locations by maximizing the utility and minimizing the cost. Our proposal is validated through a case study and several experimental results.This work was partially supported by MINECO/FEDER, Spain RTI2018-095390-B-C31 project of the Spanish government. Jaume Jordan and Vicent Botti are funded by UPV, Spain PAID-06-18 project. Jaume Jordan is also funded by grant APOSTD/2018/010 of Generalitat Valenciana -Fondo Social Europeo, Spain.Palanca Cámara, J.; Jordán, J.; Bajo, J.; Botti Navarro, VJ. (2020). An energy-aware algorithm for electric vehicle infrastructures in smart cities. Future Generation Computer Systems. 108:454-466. https://doi.org/10.1016/j.future.2020.03.001S454466108Gan, L., Topcu, U., & Low, S. H. (2013). Optimal decentralized protocol for electric vehicle charging. IEEE Transactions on Power Systems, 28(2), 940-951. doi:10.1109/tpwrs.2012.2210288Ma, T., & Mohammed, O. A. (2014). Optimal Charging of Plug-in Electric Vehicles for a Car-Park Infrastructure. IEEE Transactions on Industry Applications, 50(4), 2323-2330. doi:10.1109/tia.2013.2296620Needell, Z. A., McNerney, J., Chang, M. T., & Trancik, J. E. (2016). Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy, 1(9). doi:10.1038/nenergy.2016.112Franke, T., & Krems, J. F. (2013). Understanding charging behaviour of electric vehicle users. Transportation Research Part F: Traffic Psychology and Behaviour, 21, 75-89. doi:10.1016/j.trf.2013.09.002Shukla, A., Pekny, J., & Venkatasubramanian, V. (2011). An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Computers & Chemical Engineering, 35(8), 1431-1438. doi:10.1016/j.compchemeng.2011.03.018Nie, Y. (Marco), & Ghamami, M. (2013). A corridor-centric approach to planning electric vehicle charging infrastructure. Transportation Research Part B: Methodological, 57, 172-190. doi:10.1016/j.trb.2013.08.010Tu, W., Li, Q., Fang, Z., Shaw, S., Zhou, B., & Chang, X. (2016). Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach. Transportation Research Part C: Emerging Technologies, 65, 172-189. doi:10.1016/j.trc.2015.10.004Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transportation Research Part C: Emerging Technologies, 38, 44-55. doi:10.1016/j.trc.2013.11.001He, J., Yang, H., Tang, T.-Q., & Huang, H.-J. (2018). An optimal charging station location model with the consideration of electric vehicle’s driving range. Transportation Research Part C: Emerging Technologies, 86, 641-654. doi:10.1016/j.trc.2017.11.026Jordán, J., Palanca, J., del Val, E., Julian, V., & Botti, V. (2018). A Multi-Agent System for the Dynamic Emplacement of Electric Vehicle Charging Stations. Applied Sciences, 8(2), 313. doi:10.3390/app8020313Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding Human Mobility from Twitter. PLOS ONE, 10(7), e0131469. doi:10.1371/journal.pone.0131469Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245-1287. doi:10.1016/s0045-7825(01)00323-

    Localization of charging stations for electric vehicles using genetic algorithms

    Get PDF
    [EN] The electric vehicle (EV) is gradually being introduced in cities. The impact of this introduction is less due, among other reasons, to the lack of charging infrastructure necessary to satisfy the demand. In today¿s cities there is no adequate infrastructure and it is necessary to have action plans that allow an easy deployment of a network of EV charging points in current cities. These action plans should try to place the EV charging stations in the most appropriate places for optimizing their use. According to this, this paper presents an agent-oriented approach that analyses the different configurations of possible locations of charging stations for the electric vehicles in a specific city. The proposed multi-agent system takes into account data from a variety of sources such as social networks activity and mobility information in order to estimate the best configurations. The proposed approach employs a genetic algorithm (GA) that tries to optimize the possible configurations of the charging infrastructure. Additionally, a new crossover method for the GA is proposed considering this context.This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 and MODINVECI project of the Spanish government. Vicent Botti and Jaume Jordan are funded by UPV PAID-06-18 project. Jaume Jordan is funded by grant APOSTD/2018/010 of GVA-FSEJordán, J.; Palanca Cámara, J.; Del Val Noguera, E.; Julian Inglada, VJ.; Botti, V. (2021). Localization of charging stations for electric vehicles using genetic algorithms. Neurocomputing. 452:416-423. https://doi.org/10.1016/j.neucom.2019.11.122S41642345

    Smart green charging scheme of centralized electric vehicle stations

    Get PDF
    This paper presses a smart charging decision-making criterion that significantly contributes in enhancing the scheduling of the electric vehicles (EVs) during the charging process. The proposed criterion aims to optimize the charging time, select the charging methodology either DC constant current constant voltage (DC-CCCV) or DC multi-stage constant currents (DC-MSCC), maximize the charging capacity as well as minimize the queuing delay per EV, especially during peak hours. The decision-making algorithms have been developed by utilizing metaheuristic algorithms including the Genetic Algorithm (GA) and Water Cycle Optimization Algorithm (WCOA). The utility of the proposed models has been investigated while considering the Mixed Integer Linear Programming (MILP) as a benchmark. Furthermore, the proposed models are seeded using the Monte Carlo simulation technique by estimating the EVs arriving density to the EVS across the day. WCOA has shown an overall reduction of 13% and 8.5% in the total charging time while referring to MILP and GA respectively

    Multi-population-based differential evolution algorithm for optimization problems

    Get PDF
    A differential evolution (DE) algorithm is an evolutionary algorithm for optimization problems over a continuous domain. To solve high dimensional global optimization problems, this work investigates the performance of differential evolution algorithms under a multi-population strategy. The original DE algorithm generates an initial set of suitable solutions. The multi-population strategy divides the set into several subsets. These subsets evolve independently and connect with each other according to the DE algorithm. This helps in preserving the diversity of the initial set. Furthermore, a comparison of combination of different mutation techniques on several optimization algorithms is studied to verify their performance. Finally, the computational results on the arbitrarily generated experiments, reveal some interesting relationship between the number of subpopulations and performance of the DE. Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. In this problem, the above algorithm is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed algorithm is one of effective and promising methods for optimal EV centralized charging

    Minimizing Energy Use of Mixed-Fleet Public Transit for Fixed-Route Service

    Full text link
    Public transit can have significantly lower environmental impact than personal vehicles; however, it still uses a substantial amount of energy, causing air pollution and greenhouse gas emission. While electric vehicles (EVs) can reduce energy use, most public transit agencies have to employ them in combination with conventional, internal-combustion engine vehicles due to the high upfront costs of EVs. To make the best use of such a mixed fleet of vehicles, transit agencies need to optimize route assignments and charging schedules, which presents a challenging problem for large public transit networks. We introduce a novel problem formulation to minimize fuel and electricity use by assigning vehicles to transit trips and scheduling them for charging while serving an existing fixed-route transit schedule. We present an integer program for optimal discrete-time scheduling, and we propose polynomial-time heuristic algorithms and a genetic algorithm for finding solutions for larger networks. We evaluate our algorithms on the transit service of a mid-size U.S. city using operational data collected from public transit vehicles. Our results show that the proposed algorithms are scalable and achieve near-minimum energy use
    corecore