802 research outputs found

    Intermodal Transfer Coordination in Logistic Networks

    Get PDF
    Increasing awareness that globalization and information technology affect the patterns of transport and logistic activities has increased interest in the integration of intermodal transport resources. There are many significant advantages provided by integration of multiple transport schedules, such as: (1) Eliminating direct routes connecting all origin-destinations pairs and concentrating cargos on major routes; (2) improving the utilization of existing transportation infrastructure; (3) reducing the requirements for warehouses and storage areas due to poor connections, and (4) reducing other impacts including traffic congestion, fuel consumption and emissions. This dissertation examines a series of optimization problems for transfer coordination in intermodal and intra-modal logistic networks. The first optimization model is developed for coordinating vehicle schedules and cargo transfers at freight terminals, in order to improve system operational efficiency. A mixed integer nonlinear programming problem (MINLP) within the studied multi-mode, multi-hub, and multi-commodity network is formulated and solved by using sequential quadratic programming (SQP), genetic algorithms (GA) and a hybrid GA-SQP heuristic algorithm. This is done primarily by optimizing service frequencies and slack times for system coordination, while also considering loading and unloading, storage and cargo processing operations at the transfer terminals. Through a series of case studies, the model has shown its ability to optimize service frequencies (or headways) and slack times based on given input information. The second model is developed for countering schedule disruptions within intermodal freight systems operating in time-dependent, stochastic and dynamic environments. When routine disruptions occur (e.g. traffic congestion, vehicle failures or demand fluctuations) in pre-planned intermodal timed-transfer systems, the proposed dispatching control method determines through an optimization process whether each ready outbound vehicle should be dispatched immediately or held waiting for some late incoming vehicles with connecting freight. An additional sub-model is developed to deal with the freight left over due to missed transfers. During the phases of disruption responses, alleviations and management, the proposed real-time control model may also consider the propagation of delays at further downstream terminals. For attenuating delay propagations, an integrated dispatching control model and an analysis of sensitivity to slack times are presented

    Development of transportation and supply chain problems with the combination of agent-based simulation and network optimization

    Get PDF
    Demand drives a different range of supply chain and logistics location decisions, and agent-based modeling (ABM) introduces innovative solutions to address supply chain and logistics problems. This dissertation focuses on an agent-based and network optimization approach to resolve those problems and features three research projects that cover prevalent supply chain management and logistics problems. The first case study evaluates demographic densities in Norway, Finland, and Sweden, and covers how distribution center (DC) locations can be established using a minimizing trip distance approach. Furthermore, traveling time maps are developed for each scenario. In addition, the Nordic area consisting of those three countries is analyzed and five DC location optimization results are presented. The second case study introduces transportation cost modelling in the process of collecting tree logs from several districts and transporting them to the nearest collection point. This research project presents agent-based modelling (ABM) that incorporates comprehensively the key elements of the pick-up and delivery supply chain model and designs the components as autonomous agents communicating with each other. The modelling merges various components such as GIS routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. The entire pick-up and delivery operation are modeled by ABM and modeling outcomes are provided by time series charts such as the number of trucks in use, facilities inventory and travel distance. In addition, various scenarios of simulation based on potential facility locations and truck numbers are evaluated and the optimal facility location and fleet size are identified. In the third case study, an agent-based modeling strategy is used to address the problem of vehicle scheduling and fleet optimization. The solution method is employed to data from a real-world organization, and a set of key performance indicators are created to assess the resolution's effectiveness. The ABM method, contrary to other modeling approaches, is a fully customized method that can incorporate extensively various processes and elements. ABM applying the autonomous agent concept can integrate various components that exist in the complex supply chain and create a similar system to assess the supply chain efficiency.Tuotteiden kysyntä ohjaa erilaisia toimitusketju- ja logistiikkasijaintipäätöksiä, ja agenttipohjainen mallinnusmenetelmä (ABM) tuo innovatiivisia ratkaisuja toimitusketjun ja logistiikan ongelmien ratkaisemiseen. Tämä väitöskirja keskittyy agenttipohjaiseen mallinnusmenetelmään ja verkon optimointiin tällaisten ongelmien ratkaisemiseksi, ja sisältää kolme tapaustutkimusta, jotka voidaan luokitella kuuluvan yleisiin toimitusketjun hallinta- ja logistiikkaongelmiin. Ensimmäinen tapaustutkimus esittelee kuinka käyttämällä väestötiheyksiä Norjassa, Suomessa ja Ruotsissa voidaan määrittää strategioita jakelukeskusten (DC) sijaintiin käyttämällä matkan etäisyyden minimoimista. Kullekin skenaariolle kehitetään matka-aikakartat. Lisäksi analysoidaan näistä kolmesta maasta koostuvaa pohjoismaista aluetta ja esitetään viisi mahdollista sijaintia optimointituloksena. Toinen tapaustutkimus esittelee kuljetuskustannusmallintamisen prosessissa, jossa puutavaraa kerätään useilta alueilta ja kuljetetaan lähimpään keräyspisteeseen. Tämä tutkimusprojekti esittelee agenttipohjaista mallinnusta (ABM), joka yhdistää kattavasti noudon ja toimituksen toimitusketjumallin keskeiset elementit ja suunnittelee komponentit keskenään kommunikoiviksi autonomisiksi agenteiksi. Mallinnuksessa yhdistetään erilaisia komponentteja, kuten GIS-reititys, mahdolliset tilojen sijainnit, satunnaiset puunhakupaikat, kaluston mitoitus, matkan pituus sekä monimuotokuljetukset. ABM:n avulla mallinnetaan noutojen ja toimituksien koko ketju ja tuloksena saadaan aikasarjoja kuvaamaan käytössä olevat kuorma-autot, sekä varastomäärät ja ajetut matkat. Lisäksi arvioidaan erilaisia simuloinnin skenaarioita mahdollisten laitosten sijainnista ja kuorma-autojen lukumäärästä sekä tunnistetaan optimaalinen toimipisteen sijainti ja tarvittava autojen määrä. Kolmannessa tapaustutkimuksessa agenttipohjaista mallinnusstrategiaa käytetään ratkaisemaan ajoneuvojen aikataulujen ja kaluston optimoinnin ongelma. Ratkaisumenetelmää käytetään dataan, joka on peräisin todellisesta organisaatiosta, ja ratkaisun tehokkuuden arvioimiseksi luodaan lukuisia keskeisiä suorituskykyindikaattoreita. ABM-menetelmä, toisin kuin monet muut mallintamismenetelmät, on täysin räätälöitävissä oleva menetelmä, joka voi sisältää laajasti erilaisia prosesseja ja elementtejä. Autonomisia agentteja soveltava ABM voi integroida erilaisia komponentteja, jotka ovat olemassa monimutkaisessa toimitusketjussa ja luoda vastaavan järjestelmän toimitusketjun tehokkuuden arvioimiseksi yksityiskohtaisesti.fi=vertaisarvioitu|en=peerReviewed

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    A viral system to optimise the daily drayage problem

    Get PDF
    The intermodal transport chain can become more efficient by means of a good organisation of the drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the different vehicles, often with the presence of time windows. This paper focuses on a new approach to tackle the daily drayage problem by the use of viral system (VS). VS is a novel bio-inspired approach that makes use of a virus-infection biological analogy that is producing very satisfactory results when dealing with complex problems with huge feasibility region.Unión Europea TEC2013-47286-C3-3-

    Integrated Intermodal Network Design with Nonlinear Inter-Hub Movement Costs

    Get PDF
    In this research, transportation mode and load route selection problems are integrated with the hub location problem in a single mathematical formulation to find the optimal design of intermodal transportation networks. Economies of scale are modeled utilizing a stepwise function that relates the per container transportation cost to the amount of flow between two nodes. A heuristic method combining a genetic algorithm and the shortest path algorithm was developed to solve this integrated planning problem. Computational experiments were completed to evaluate the performance of the proposed heuristic for different problem instances. At the end, conclusions are presented and future research directions are discussed

    Modelling Freight Allocation and Transportation Lead-Time

    Get PDF
    The authors have investigated sustainable environment delivery systems and identified transportation lead-time investigation cases. This research study aimed to increase freight delivery lead-time and minimize distance in transportation. To reach the goal, the paper\u27s authors, after analysis of the hierarchy of quantitative methods and models, proposed the framework for modeling freight allocation and transportation lead-time and delivered a study that includes discrete event simulation. During the simulation, various scenarios have been revised. Following the simulation mentioned above analysis, around 3.8 % of distance could be saved during freight delivery if lead-time for transportation were revised by choosing five days criteria for modeling freight allocation. The savings depend on the number of received orders from different geographic locations

    Integrated Scheduling of Vessels, Cranes and Trains to Minimize Delays in a Seaport Container Terminal

    Get PDF
    The multiple processes taking place on a daily basis at an intermodal container terminal are often considered individually, given the complexity of their joint consideration. Nevertheless, the integrated planning and scheduling of operations in an intermodal terminal, including the arrivals and departures of trains and vessels, is a very relevant topic for terminal managers, which can benefit from the application of Operations Research (OR) techniques to obtain near-optimal solutions without excessive computational cost. Applying the functional integration technique, we present here a mathematical model for this terminal planning process, and solve it using heuristic procedures, given its complexity and size. Details on the benchmark comparison of a genetic algorithm, a simulated annealing routine and a tabu search are provided for different problem instances

    A simulation-based approach for material yard laydown planning

    Get PDF
    This paper describes a simulation-based approach for planning material laydown yards for steel fabrication projects. The classic approach to material placement is the “reactive approach,” whereby as material arrives, the yard foreman decides, based on few rules and his/her past experience, where to place everything. It's often fraught with uncertainty resulting from imprecise and difficult-to-forecast construction consumption schedules, resource interactions, and supply chain issues, especially in material delivery. This paper outlines an approach to optimize reactive placement policy using heuristics, genetic algorithms and simulation to model material movement from laydown areas to the consumption unit. The novel approach combines analytical tools and heuristics to model the dynamic nature of material management. The paper compares this integrated approach with commonly-used optimization techniques which use weighted target functions based on rule of thumb. A case study demonstrates the suitability and efficiency of the proposed optimization method in reactive laydown yard management

    Applications of Genetic Algorithm and Its Variants in Rail Vehicle Systems: A Bibliometric Analysis and Comprehensive Review

    Get PDF
    Railway systems are time-varying and complex systems with nonlinear behaviors that require effective optimization techniques to achieve optimal performance. Evolutionary algorithms methods have emerged as a popular optimization technique in recent years due to their ability to handle complex, multi-objective issues of such systems. In this context, genetic algorithm (GA) as one of the powerful optimization techniques has been extensively used in the railway sector, and applied to various problems such as scheduling, routing, forecasting, design, maintenance, and allocation. This paper presents a review of the applications of GAs and their variants in the railway domain together with bibliometric analysis. The paper covers highly cited and recent studies that have employed GAs in the railway sector and discuss the challenges and opportunities of using GAs in railway optimization problems. Meanwhile, the most popular hybrid GAs as the combination of GA and other evolutionary algorithms methods such as particle swarm optimization (PSO), ant colony optimization (ACO), neural network (NN), fuzzy-logic control, etc with their dedicated application in the railway domain are discussed too. More than 250 publications are listed and classified to provide a comprehensive analysis and road map for experts and researchers in the field helping them to identify research gaps and opportunities
    corecore