834 research outputs found

    Emergent Behavior Development and Control in Multi-Agent Systems

    Get PDF
    Emergence in natural systems is the development of complex behaviors that result from the aggregation of simple agent-to-agent and agent-to-environment interactions. Emergence research intersects with many disciplines such as physics, biology, and ecology and provides a theoretical framework for investigating how order appears to spontaneously arise in complex adaptive systems. In biological systems, emergent behaviors allow simple agents to collectively accomplish multiple tasks in highly dynamic environments; ensuring system survival. These systems all display similar properties: self-organized hierarchies, robustness, adaptability, and decentralized task execution. However, current algorithmic approaches merely present theoretical models without showing how these models actually create hierarchical, emergent systems. To fill this research gap, this dissertation presents an algorithm based on entropy and speciation - defined as morphological or physiological differences in a population - that results in hierarchical emergent phenomena in multi-agent systems. Results show that speciation creates system hierarchies composed of goal-aligned entities, i.e. niches. As niche actions aggregate into more complex behaviors, more levels emerge within the system hierarchy, eventually resulting in a system that can meet multiple tasks and is robust to environmental changes. Speciation provides a powerful tool for creating goal-aligned, decentralized systems that are inherently robust and adaptable, meeting the scalability demands of current, multi-agent system design. Results in base defense, k-n assignment, division of labor and resource competition experiments, show that speciated populations create hierarchical self-organized systems, meet multiple tasks and are more robust to environmental change than non-speciated populations

    Neuro-Evolution for Emergent Specialization in Collective Behavior Systems

    Get PDF
    Eiben, A.E. [Promotor]Schut, M.C. [Copromotor

    Interactive Tracking, Prediction, and Behavior Learning of Pedestrians in Dense Crowds

    Get PDF
    The ability to automatically recognize human motions and behaviors is a key skill for autonomous machines to exhibit to interact intelligently with a human-inhabited environment. The capabilities autonomous machines should have include computing the motion trajectory of each pedestrian in a crowd, predicting his or her position in the near future, and analyzing the personality characteristics of the pedestrian. Such techniques are frequently used for collision-free robot navigation, data-driven crowd simulation, and crowd surveillance applications. However, prior methods for these problems have been restricted to low-density or sparse crowds where the pedestrian movement is modeled using simple motion models. In this thesis, we present several interactive algorithms to extract pedestrian trajectories from videos in dense crowds. Our approach combines different pedestrian motion models with particle tracking and mixture models and can obtain an average of 20%20\% improvement in accuracy in medium-density crowds over prior work. We compute the pedestrian dynamics from these trajectories using Bayesian learning techniques and combine them with global methods for long-term pedestrian prediction in densely crowded settings. Finally, we combine these techniques with Personality Trait Theory to automatically classify the dynamic behavior or the personality of a pedestrian based on his or her movements in a crowded scene. The resulting algorithms are robust and can handle sparse and noisy motion trajectories. We demonstrate the benefits of our long-term prediction and behavior classification methods in dense crowds and highlight the benefits over prior techniques. We highlight the performance of our novel algorithms on three different applications. The first application is interactive data-driven crowd simulation, which includes crowd replication as well as the combination of pedestrian behaviors from different videos. Secondly, we combine the prediction scheme with proxemic characteristics from psychology and use them to perform socially-aware navigation. Finally, we present novel techniques for anomaly detection in low-to medium-density crowd videos using trajectory-level behavior learning.Doctor of Philosoph

    Efficient Evolution of Neural Networks

    Get PDF
    This thesis addresses the study of evolutionary methods for the synthesis of neural network controllers. Chapter 1 introduces the research area, reviews the state of the art, discusses promising research directions, and presents the two major scientific objectives of the thesis. The first objective, which is covered in Chapter 2, is to verify the efficacy of some of the most promising neuro-evolutionary methods proposed in the literature, including two new methods that I elaborated. This has been made by designing extended version of the double-pole balancing problem, which can be used to more properly benchmark alternative algorithms, by studying the effect of critical parameters, and by conducting several series of comparative experiments. The obtained results indicate that some methods perform better with respect to all the considered criteria, i.e. performance, robustness to environmental variations and capability to scale-up to more complex problems. The second objective, which is targeted in Chapter 3, consists in the design of a new hybrid algorithm that combines evolution and learning by demonstration. The combination of these two processes is appealing since it potentially allows the adaptive agent to exploit a richer training feedback constituted by both a scalar performance objective (reinforcement signal or fitness measure) and a detailed description of a suitable behaviour (demonstration). The proposed method has been successfully evaluated on two qualitatively different robotic problems. Chapter 4 summarizes the results obtained and describes the major contributions of the thesis

    Objective Video-Based Assessment of ADHD-Like Canine Behavior Using Machine Learning

    Get PDF
    Canine ADHD-like behavior is a behavioral problem that often compromises dogs’ well-being, as well as the quality of life of their owners; early diagnosis and clinical intervention are often critical for successful treatment, which usually involves medication and/or behavioral modification. Diagnosis mainly relies on owner reports and some assessment scales, which are subject to subjectivity. This study is the first to propose an objective method for automated assessment of ADHD-like behavior based on video taken in a consultation room. We trained a machine learning classifier to differentiate between dogs clinically treated in the context of ADHD-like behavior and health control group with 81% accuracy; we then used its output to score the degree of exhibited ADHD-like behavior. In a preliminary evaluation in clinical context, in 8 out of 11 patients receiving medical treatment to treat excessive ADHD-like behavior, H-score was reduced. We further discuss the potential applications of the provided artifacts in clinical settings, based on feedback on H-score received from a focus group of four behavior experts

    Multiagent Learning Through Indirect Encoding

    Get PDF
    Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other. In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent’s location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. iii The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(λ) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding
    • …
    corecore