1,640 research outputs found

    CPS Data Streams Analytics based on Machine Learning for Cloud and Fog Computing: A Survey

    Get PDF
    Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this paper is the first to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a cloud and fog architecture

    Performance Evaluation of Network Anomaly Detection Systems

    Get PDF
    Nowadays, there is a huge and growing concern about security in information and communication technology (ICT) among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. Attacks, problems, and internal failures when not detected early may badly harm an entire Network system. Thus, this thesis presents an autonomous profile-based anomaly detection system based on the statistical method Principal Component Analysis (PCADS-AD). This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques, addition of a different anomaly detection approach, and comparisons to other methods performed in this thesis using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema. The observed results seek to contribute to the advance of the state of the art in methods and strategies for anomaly detection that aim to surpass some challenges that emerge from the constant growth in complexity, speed and size of today’s large scale networks, also providing high-value results for a better detection in real time.Atualmente, existe uma enorme e crescente preocupação com segurança em tecnologia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e integridade em muitos domínios, como segurança nacional, armazenamento de dados privados, bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito surgiram ao longo dos anos. Ataques, problemas e falhas internas quando não detetados precocemente podem prejudicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Componentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e portas de origem e destino para fornecer ao administrador de rede as informações necessárias para resolvê-los. Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem de deteção distinta da proposta principal e comparações com outros métodos realizados nesta tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção. Com os resultados observados nesta tese, este trabalho de doutoramento busca contribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias, visando superar alguns desafios que emergem do constante crescimento em complexidade, velocidade e tamanho das redes de grande porte da atualidade, proporcionando também alta performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para que possa ser aplicado a deteção em tempo real

    A new unified intrusion anomaly detection in identifying unseen web attacks

    Get PDF
    The global usage of more sophisticated web-based application systems is obviously growing very rapidly. Major usage includes the storing and transporting of sensitive data over the Internet. The growth has consequently opened up a serious need for more secured network and application security protection devices. Security experts normally equip their databases with a large number of signatures to help in the detection of known web-based threats. In reality, it is almost impossible to keep updating the database with the newly identified web vulnerabilities. As such, new attacks are invisible. This research presents a novel approach of Intrusion Detection System (IDS) in detecting unknown attacks on web servers using the Unified Intrusion Anomaly Detection (UIAD) approach. The unified approach consists of three components (preprocessing, statistical analysis, and classification). Initially, the process starts with the removal of irrelevant and redundant features using a novel hybrid feature selection method. Thereafter, the process continues with the application of a statistical approach to identifying traffic abnormality. We performed Relative Percentage Ratio (RPR) coupled with Euclidean Distance Analysis (EDA) and the Chebyshev Inequality Theorem (CIT) to calculate the normality score and generate a finest threshold. Finally, Logitboost (LB) is employed alongside Random Forest (RF) as a weak classifier, with the aim of minimising the final false alarm rate. The experiment has demonstrated that our approach has successfully identified unknown attacks with greater than a 95% detection rate and less than a 1% false alarm rate for both the DARPA 1999 and the ISCX 2012 datasets

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Reduction of False Positives in Intrusion Detection Based on Extreme Learning Machine with Situation Awareness

    Get PDF
    Protecting computer networks from intrusions is more important than ever for our privacy, economy, and national security. Seemingly a month does not pass without news of a major data breach involving sensitive personal identity, financial, medical, trade secret, or national security data. Democratic processes can now be potentially compromised through breaches of electronic voting systems. As ever more devices, including medical machines, automobiles, and control systems for critical infrastructure are increasingly networked, human life is also more at risk from cyber-attacks. Research into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a mainstay of computer and network protection and continue to evolve. However, detecting previously unseen, or zero-day, threats is still an elusive goal. Many commercial IDS deployments still use misuse detection based on known threat signatures. Systems utilizing anomaly detection have shown great promise to detect previously unseen threats in academic research. But their success has been limited in large part due to the excessive number of false positives that they produce. This research demonstrates that false positives can be better minimized, while maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and Hidden Markov Models (HMM) as classifiers within the context of a situation awareness framework. This research was performed using the University of New South Wales - Network Based 2015 (UNSW-NB15) data set which is more representative of contemporary cyber-attack and normal network traffic than older data sets typically used in IDS research. It is shown that this approach provides better results than either HMM or ELM alone and with a lower False Positive Rate (FPR) than other comparable approaches that also used the UNSW-NB15 data set

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    A Review of Rule Learning Based Intrusion Detection Systems and Their Prospects in Smart Grids

    Get PDF
    corecore