134 research outputs found

    Using Generative Adversarial Nets on Atari Games for Feature Extraction in Deep Reinforcement Learning

    Full text link
    Deep Reinforcement Learning (DRL) has been successfully applied in several research domains such as robot navigation and automated video game playing. However, these methods require excessive computation and interaction with the environment, so enhancements on sample efficiency are required. The main reason for this requirement is that sparse and delayed rewards do not provide an effective supervision for representation learning of deep neural networks. In this study, Proximal Policy Optimization (PPO) algorithm is augmented with Generative Adversarial Networks (GANs) to increase the sample efficiency by enforcing the network to learn efficient representations without depending on sparse and delayed rewards as supervision. The results show that an increased performance can be obtained by jointly training a DRL agent with a GAN discriminator. ---- Derin Pekistirmeli Ogrenme, robot navigasyonu ve otomatiklestirilmis video oyunu oynama gibi arastirma alanlarinda basariyla uygulanmaktadir. Ancak, kullanilan yontemler ortam ile fazla miktarda etkilesim ve hesaplama gerektirmekte ve bu nedenle de ornek verimliligi yonunden iyilestirmelere ihtiyac duyulmaktadir. Bu gereksinimin en onemli nedeni, gecikmeli ve seyrek odul sinyallerinin derin yapay sinir aglarinin etkili betimlemeler ogrenebilmesi icin yeterli bir denetim saglayamamasidir. Bu calismada, Proksimal Politika Optimizasyonu algoritmasi Uretici Cekismeli Aglar (UCA) ile desteklenerek derin yapay sinir aglarinin seyrek ve gecikmeli odul sinyallerine bagimli olmaksizin etkili betimlemeler ogrenmesi tesvik edilmektedir. Elde edilen sonuclar onerilen algoritmanin ornek verimliliginde artis elde ettigini gostermektedir.Comment: in Turkis

    A Survey of Imitation Learning: Algorithms, Recent Developments, and Challenges

    Full text link
    In recent years, the development of robotics and artificial intelligence (AI) systems has been nothing short of remarkable. As these systems continue to evolve, they are being utilized in increasingly complex and unstructured environments, such as autonomous driving, aerial robotics, and natural language processing. As a consequence, programming their behaviors manually or defining their behavior through reward functions (as done in reinforcement learning (RL)) has become exceedingly difficult. This is because such environments require a high degree of flexibility and adaptability, making it challenging to specify an optimal set of rules or reward signals that can account for all possible situations. In such environments, learning from an expert's behavior through imitation is often more appealing. This is where imitation learning (IL) comes into play - a process where desired behavior is learned by imitating an expert's behavior, which is provided through demonstrations. This paper aims to provide an introduction to IL and an overview of its underlying assumptions and approaches. It also offers a detailed description of recent advances and emerging areas of research in the field. Additionally, the paper discusses how researchers have addressed common challenges associated with IL and provides potential directions for future research. Overall, the goal of the paper is to provide a comprehensive guide to the growing field of IL in robotics and AI.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore