26,304 research outputs found

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Security Games with Information Leakage: Modeling and Computation

    Full text link
    Most models of Stackelberg security games assume that the attacker only knows the defender's mixed strategy, but is not able to observe (even partially) the instantiated pure strategy. Such partial observation of the deployed pure strategy -- an issue we refer to as information leakage -- is a significant concern in practical applications. While previous research on patrolling games has considered the attacker's real-time surveillance, our settings, therefore models and techniques, are fundamentally different. More specifically, after describing the information leakage model, we start with an LP formulation to compute the defender's optimal strategy in the presence of leakage. Perhaps surprisingly, we show that a key subproblem to solve this LP (more precisely, the defender oracle) is NP-hard even for the simplest of security game models. We then approach the problem from three possible directions: efficient algorithms for restricted cases, approximation algorithms, and heuristic algorithms for sampling that improves upon the status quo. Our experiments confirm the necessity of handling information leakage and the advantage of our algorithms

    Towards a science of security games

    Get PDF
    Abstract. Security is a critical concern around the world. In many domains from counter-terrorism to sustainability, limited security resources prevent complete security coverage at all times. Instead, these limited resources must be scheduled (or allocated or deployed), while simultaneously taking into account the impor-tance of different targets, the responses of the adversaries to the security posture, and the potential uncertainties in adversary payoffs and observations, etc. Com-putational game theory can help generate such security schedules. Indeed, casting the problem as a Stackelberg game, we have developed new algorithms that are now deployed over multiple years in multiple applications for scheduling of secu-rity resources. These applications are leading to real-world use-inspired research in the emerging research area of “security games”. The research challenges posed by these applications include scaling up security games to real-world sized prob-lems, handling multiple types of uncertainty, and dealing with bounded rationality of human adversaries.

    Spartan Daily, April 27, 1987

    Get PDF
    Volume 88, Issue 57https://scholarworks.sjsu.edu/spartandaily/7582/thumbnail.jp
    corecore