6,434 research outputs found

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Analysis and modeling a distributed co-operative multi agent system for scaling-up business intelligence

    Get PDF
    Modeling A Distributed Co-Operative Multi Agent System in the area of Business Intelligence is the newer topic. During the work carried out a software Integrated Intelligent Advisory Model (IIAM) has been develop, which is a personal finance portfolio ma

    Technical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methods

    Get PDF
    Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.154 - Katedra financívyhově

    Supplier Selection and Relationship Management: An Application of Machine Learning Techniques

    Get PDF
    Managing supply chains is an extremely challenging task due to globalization, short product life cycle, and recent advancements in information technology. These changes result in the increasing importance of managing the relationship with suppliers. However, the supplier selection literature mainly focuses on selecting suppliers based on previous performance, environmental and social criteria and ignores supplier relationship management. Moreover, although the explosion of data and the capabilities of machine learning techniques in handling dynamic and fast changing environment show promising results in customer relationship management, especially in customer lifetime value, this area has been untouched in the upstream side of supply chains. This research is an attempt to address this gap by proposing a framework to predict supplier future value, by incorporating the contract history data, relationship value, and supply network properties. The proposed model is empirically tested for suppliers of public works and government services Canada. Methodology wise, this thesis demonstrates the application of machine learning techniques for supplier selection and developing effective strategies for managing relationships. Practically, the proposed framework equips supply chain managers with a proactive and forward-looking approach for managing supplier relationship

    Risk Management in Environment, Production and Economy

    Get PDF
    The term "risk" is very often associated with negative meanings. However, in most cases, many opportunities can present themselves to deal with the events and to develop new solutions which can convert a possible danger to an unforeseen, positive event. This book is a structured collection of papers dealing with the subject and stressing the importance of a relevant issue such as risk management. The aim is to present the problem in various fields of application of risk management theories, highlighting the approaches which can be found in literature

    Successful Innovation Sourcing: a Matter of Support plus Skills

    Get PDF

    A Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection

    Get PDF
    Considering the concept of clustering, the main idea of the present study is based on the fact that all stocks for choosing and ranking will not be necessarily in one cluster. Taking the mentioned point into account, this study aims at offering a new methodology for making decisions concerning the formation of a portfolio of stocks in the stock market. To meet this end, Multiple-Criteria Decision-Making, Data Mining, and Multi-objective Optimization were employed. First, candidate stocks were clustered using two-step clustering method. Available stocks in each cluster were independently ranked using grey relational analysis. Firefly algorithm was employed for Pareto analysis of risk and ranking. The results of clustering in the stocks revealed that all candidate stocks were not placed in one cluster. The results of robustness analysis employed in ranking method verified the accuracy of calculations in the grey relational analysis through stock repetition of candidates in each cluster

    Probabilistic hesitant fuzzy multiple attribute decisionmaking based on regret theory for the evaluation of venture capital projects

    Get PDF
    The selection of venture capital investment projects is one of the most important decision-making activities for venture capitalists. Due to the complexity of investment market and the limited cognition of people, most of the venture capital investment decision problems are highly uncertain and the venture capitalists are often bounded rational under uncertainty. To address such problems, this article presents an approach based on regret theory to probabilistic hesitant fuzzy multiple attribute decision-making. Firstly, when the information on the occurrence probabilities of all the elements in the probabilistic hesitant fuzzy element (P.H.F.E.) is unknown or partially known, two different mathematical programming models based on water-filling theory and the maximum entropy principle are provided to handle these complex situations. Secondly, to capture the psychological behaviours of venture capitalists, the regret theory is utilised to solve the problem of selection of venture capital investment projects. Finally, comparative analysis with the existing approaches is conducted to demonstrate the feasibility and applicability of the proposed method

    House decision making system by using soft set theory

    Get PDF
    Now-a-days, there are too many characteristics of houses that people like to. Most of the people would find difficulties in find house based on certain circumstances because of too many characteristics that should be complete in continuous living. In addition, not all house would satisfied all side. It is because they have their own expectation for their own houses. The problem is, they do not know how to choose the best choice with the good characteristics for their own houses. By that, this system provides the solution with the objectives, which are to make people easier in making decision and to apply the soft set technique into a real life cases. The parameter for the house such as, the price, the place and many more will be judging by people before they buy it. So, the decision making using soft sets theory would be the solution for the problem. The concept that proposed by Maji et al. is employed to solve the problem of house decision making. By the application of the system, people would be easy to choose the houses according to the satisfactions of characteristics like they want. This report will discuss on the preparation and analysis that been collected throughout the development cycle of this system
    corecore