143,637 research outputs found

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Uniform: The Form Validation Language

    Get PDF
    Digital forms are becoming increasingly more prevalent but the ease of creation is not. Web Forms are difficult to produce and validate. This design project seeks to simplify this process. This project is comprised of two parts: a logical programming language (Uniform) and a web application. Uniform is a language that allows its users to define logical relationships between web elements and apply simple rules to individual inputs to both validate the form and manipulate its components depending on user input. Uniform provides an extra layer of abstraction to complex coding. The web app implements Uniform to provide business-level programmers with an interface to build and manage forms. Users will create form templates, manage form instances, and cooperatively complete forms through the web app. Uniform’s development is ongoing, it will receive continued support and is available as open-source. The web application is software owned and maintained by HP Inc. which will be developed further before going to market

    A Case Study in Matching Service Descriptions to Implementations in an Existing System

    Full text link
    A number of companies are trying to migrate large monolithic software systems to Service Oriented Architectures. A common approach to do this is to first identify and describe desired services (i.e., create a model), and then to locate portions of code within the existing system that implement the described services. In this paper we describe a detailed case study we undertook to match a model to an open-source business application. We describe the systematic methodology we used, the results of the exercise, as well as several observations that throw light on the nature of this problem. We also suggest and validate heuristics that are likely to be useful in partially automating the process of matching service descriptions to implementations.Comment: 20 pages, 19 pdf figure

    Checking-in on Network Functions

    Full text link
    When programming network functions, changes within a packet tend to have consequences---side effects which must be accounted for by network programmers or administrators via arbitrary logic and an innate understanding of dependencies. Examples of this include updating checksums when a packet's contents has been modified or adjusting a payload length field of a IPv6 header if another header is added or updated within a packet. While static-typing captures interface specifications and how packet contents should behave, it does not enforce precise invariants around runtime dependencies like the examples above. Instead, during the design phase of network functions, programmers should be given an easier way to specify checks up front, all without having to account for and keep track of these consequences at each and every step during the development cycle. In keeping with this view, we present a unique approach for adding and generating both static checks and dynamic contracts for specifying and checking packet processing operations. We develop our technique within an existing framework called NetBricks and demonstrate how our approach simplifies and checks common dependent packet and header processing logic that other systems take for granted, all without adding much overhead during development.Comment: ANRW 2019 ~ https://irtf.org/anrw/2019/program.htm

    CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules

    Get PDF
    Nowadays, knowledge extraction methods from Next Generation Sequencing data are highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on case-control studies with rule-based supervised classification algorithms that build a model able to discriminate cases from controls. State of the art algorithms compute a single classification model that contains few features (genes). On the contrary, our goal is to elicit a higher amount of knowledge by computing many classification models, and therefore to identify most of the genes related to the predicted class
    corecore