15 research outputs found

    Power Optimization for Wireless Sensor Networks

    Get PDF

    A novel virtual reality-based system for remote environmental monitoring and control using an activity modulated wireless sensor network

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019The ability to monitor and control a home environment remotely has improved considerably in recent years due to improvements in the computational power, reduction in physical size, reduced implementation cost, and widespread use of both wireless sensor networks and smart home systems. This thesis presents a remote environment management system that integrated a custom wireless sensor network that monitored environmental factors in multiple locations, a smart system that controlled those factors, and a virtual reality system that functioned as a remote interface with the environment. The resulting system enabled a user to efficiently interact with a distant environment using an immersive virtual reality experience. The user was able to interact with the remote environments by issuing voice commands, performing hand gestures, and interacting with virtual objects. This type of system has applications in many fields ranging from healthcare to the industrial sector. The case study system that was designed in this thesis monitored and controlled the environments of several rooms in a home. A novel approach to modulating the activity of the wireless sensor network was implemented in this system. The rate at which the sensor nodes collected and transmitted data was modulated based on the visibility of the virtual objects called VSNs. These virtual sensor nodes displayed the sensor node measurements in virtual reality. This method was expanded upon using a motion prediction algorithm that was used to predict if the virtual sensor nodes were going to be visible to the user. This prediction was then used to modulate the activity of the wireless sensor network. These activity modulation algorithms were used to reduce the power consumption of the wireless sensor network and thus increasing its operational lifespan, while simultaneously reducing unnecessary RF signals in the environment that can interfere with the operation of other wireless systems. These algorithms would be crucial for systems monitoring complex sensor-rich environments where reducing the data transmitted and extending the system's lifespan was paramount, such as managing the environments of many rooms in a large industrial park or controlling the environments of spacecraft from Mission Control on Earth

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    Wireless sensor networks and their industrial applications

    Get PDF
    Wireless Sensor Networks (WSN) represent a relatively modern concept which has captured the interest of many in the research community. Coupled with appropriate hardware, they offer great flexibility in terms of their applicability to solving real world problems. This can be seen with applications ranging from environmental issues to healthcare and even artificial intelligence. Much of the work relating to WSN has been predominantly in the research domain. and so it is the purpose of this study to investigate ways in which they can be applied to solve industrial issues. This study particularly considers inventory management in the airline and packaged gas industries where there are many common fundamental requirements. A prototype system is presented which includes a database to record and obtain relevant tracking data in order to facilitate asset identification. Information of how this system may be applied within each industry is also included, in addition to how WSN can be utilised to fulfil the specific needs of individual industries through the use of custom built hardware and sensors. Initial experimental results of this system are also given along with experimental results pertaining to the suitability of WSN devices in industry. Despite WSN devices being still relatively new many advances have been made in order to make them more powerful and also smaller. However, as the size of the devices has decreased very been done with regards to critical components such as the antenna. As a result this work looks at the production of an industrially suitable antenna in terms of its design, construction and testing. Finally, wireless sensing in the automotive industry is briefly discussed. The apphcation of WSN in the automotive industry aims to improve recent spot weld monitoring techniques which determine the quality and integrity of a spot weld in real-time

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN

    Enabling technologies for distributed body sensor networks

    No full text
    Low Power Wireless Sensor Networks, Preventative Healthcare and Pervasive Systems are set to provide long-term continuous monitoring, diagnosis and care for patients in the next few years. Distributed forms of these networks are investigated from a holistic point of view. Individual components of these systems including: sensors, software and hardware implementations are investigated and analysed. Novel sensors are developed for low power capturing of Body Sensor Network (BSN) information to enable long term use. Software frameworks are designed to enable these technologies to run on low power nodes as well as enabling them to perform evaluation of their data before transmission into the network. An architecture is designed to enable task distribution to intensive processing from low power nodes. Two forms of distributed BSNs are also developed: a horizontal network and a vertical network. It is shown that using these two types of networks enables information and task distribution allowing low power sensing nodes to evaluate information before transmission. These systems have the opportunity to revolutionalise expensive acute episodic care systems of today, but are not currently being implemented or investigated to the extent that they could. The technological barriers to entry are addressed in this thesis with the investigation and evaluation of distributed body sensor networks. It is shown that horizontal networks can distribute information efficiently, while vertical networks can distribute processing efficiently

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    An Optimized Hidden Node Handling Approach For Improving The Coverage And Network Efficiency In Wireless Multimedia Sensor Networks

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) are comprised of sensor nodes that form the momentary network and do not rely on the support of any orthodox centralized infrastructure or administration. Such a given situation mandates that every sensor node gets the support of the other sensor nodes in order to advance the packets to the desired destination node, and specifically to the sink node. Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a challenge due to their limited bandwidth and power resources. The existing WMSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs vary as it depends on the correct location of the sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption and synchronization loss between neighboring nodes. The focus is on hidden node problems in WMSNs and how they can affect the network performance. Hidden nodes occur in the networks when nodes that are invisible to each other communicate with another node that is visible to these nodes at a particular period. Eventually, a collision may occur and the node will be unable to receive any packets. In addition, this study looks at the effectiveness of the optimal orientation for the sensor nodes in the environment. This work introduces an Optimized Hidden Node Handling (OHND) approach. The OHND consists of three phases: hidden node handling, message exchange, and location and view handling. These three phases aim to maximize the multimedia node coverage and improve energy efficiency, hidden node handling capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process to handle the mobility of the nodes. To evaluate the performance of the proposed algorithms, the results are compared with other known approaches. The results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage, achieve power efficiency, reduce the end-to-end delay, and improve the throughput. Finally, this study provides an efficient solution for handling the hidden node problem in case mobility

    Configuring heterogeneous wireless sensor networks under quality-of-service constraints

    Get PDF
    Ph.DNUS-TU/E JOINT PH.D. PROGRAMM
    corecore