1,854 research outputs found

    A survey on touch dynamics authentication in mobile devices

    Get PDF
    © 2016 Elsevier Ltd. All rights reserved. There have been research activities in the area of keystroke dynamics biometrics on physical keyboards (desktop computers or conventional mobile phones) undertaken in the past three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern touchscreen mobile devices), there has been little published work. Particularly, there is a lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing to the widespread use of touchscreen mobile devices, it is necessary for us to examine the techniques and their effectiveness in the domain of touch dynamics biometrics. The aim of this paper is to provide some insights and comparative analysis of the current state of the art in the topic area, including data acquisition protocols, feature data representations, decision making techniques, as well as experimental settings and evaluations. With such a survey, we can gain a better understanding of the current state of the art, thus identifying challenging issues and knowledge gaps for further research

    Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications

    Full text link
    The unprecedented proliferation of smart devices together with novel communication, computing, and control technologies have paved the way for the Advanced Internet of Things~(A-IoT). This development involves new categories of capable devices, such as high-end wearables, smart vehicles, and consumer drones aiming to enable efficient and collaborative utilization within the Smart City paradigm. While massive deployments of these objects may enrich people's lives, unauthorized access to the said equipment is potentially dangerous. Hence, highly-secure human authentication mechanisms have to be designed. At the same time, human beings desire comfortable interaction with their owned devices on a daily basis, thus demanding the authentication procedures to be seamless and user-friendly, mindful of the contemporary urban dynamics. In response to these unique challenges, this work advocates for the adoption of multi-factor authentication for A-IoT, such that multiple heterogeneous methods - both well-established and emerging - are combined intelligently to grant or deny access reliably. We thus discuss the pros and cons of various solutions as well as introduce tools to combine the authentication factors, with an emphasis on challenging Smart City environments. We finally outline the open questions to shape future research efforts in this emerging field.Comment: 7 pages, 4 figures, 2 tables. The work has been accepted for publication in IEEE Network, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Activity-Based User Authentication Using Smartwatches

    Get PDF
    Smartwatches, which contain an accelerometer and gyroscope, have recently been used to implement gait and gesture- based biometrics; however, the prior studies have long-established drawbacks. For example, data for both training and evaluation was captured from single sessions (which is not realistic and can lead to overly optimistic performance results), and in cases when the multi-day scenario was considered, the evaluation was often either done improperly or the results are very poor (i.e., greater than 20% of EER). Moreover, limited activities were considered (i.e., gait or gestures), and data captured within a controlled environment which tends to be far less realistic for real world applications. Therefore, this study remedies these past problems by training and evaluating the smartwatch-based biometric system on data from different days, using large dataset that involved the participation of 60 users, and considering different activities (i.e., normal walking (NW), fast walking (FW), typing on a PC keyboard (TypePC), playing mobile game (GameM), and texting on mobile (TypeM)). Unlike the prior art that focussed on simply laboratory controlled data, a more realistic dataset, which was captured within un-constrained environment, is used to evaluate the performance of the proposed system. Two principal experiments were carried out focusing upon constrained and un-constrained environments. The first experiment included a comprehensive analysis of the aforementioned activities and tested under two different scenarios (i.e., same and cross day). By using all the extracted features (i.e., 88 features) and the same day evaluation, EERs of the acceleration readings were 0.15%, 0.31%, 1.43%, 1.52%, and 1.33% for the NW, FW, TypeM, TypePC, and GameM respectively. The EERs were increased to 0.93%, 3.90%, 5.69%, 6.02%, and 5.61% when the cross-day data was utilized. For comparison, a more selective set of features was used and significantly maximize the system performance under the cross day scenario, at best EERs of 0.29%, 1.31%, 2.66%, 3.83%, and 2.3% for the aforementioned activities respectively. A realistic methodology was used in the second experiment by using data collected within unconstrained environment. A light activity detection approach was developed to divide the raw signals into gait (i.e., NW and FW) and stationary activities. Competitive results were reported with EERs of 0.60%, 0% and 3.37% for the NW, FW, and stationary activities respectively. The findings suggest that the nature of the signals captured are sufficiently discriminative to be useful in performing transparent and continuous user authentication.University of Kuf

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions
    • 

    corecore