60,576 research outputs found

    The use of additional information in problem-oriented learning environments

    Get PDF
    Self-directed learning with authentic and complex problems (problem-oriented learning) requires that learners observe their own learning and use additional information when it is appropriate – e.g. hypertextual information in computer-supported learning environments. Research results indicate that learners in problem-oriented learning environments often have difficulties using additional information adequately, and that they should be supported. Two studies with a computer-supported problem-oriented learning environment in the domain of medicine analyzed the effects of strategy instruction on the use of additional information and the quality of the problem representation. In study 1, an expert model was used for strategy instruction. Two groups were compared: one group with strategy modeling and one group without. Strategy modeling influenced the frequency of looked-up hypertextual information, but did not influence the quality of learners' problem representations. This could be explained by difficulties in applying the general hypertext information to the problem. In study 2, the additional information was presented in a more contextualized way as graphical representation of the case and its relevant concepts. Again, two groups were compared: one with a strategy instruction text and one without. Strategy instruction texts supported an adequate use of this graphical information by learners and had an effect on the quality of their problem representations. These findings are discussed with respect to the design of additional help systems in problem-oriented learning environments

    Eliciting Expertise

    No full text
    Since the last edition of this book there have been rapid developments in the use and exploitation of formally elicited knowledge. Previously, (Shadbolt and Burton, 1995) the emphasis was on eliciting knowledge for the purpose of building expert or knowledge-based systems. These systems are computer programs intended to solve real-world problems, achieving the same level of accuracy as human experts. Knowledge engineering is the discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems (Schreiber et al., 2000) This chapter will discuss the problem of knowledge elicitation for knowledge intensive systems in general

    Using protocol analysis to explore the creative requirements engineering process

    Full text link
    Protocol analysis is an empirical method applied by researchers in cognitive psychology and behavioural analysis. Protocol analysis can be used to collect, document and analyse thought processes by an individual problem solver. In general, research subjects are asked to think aloud when performing a given task. Their verbal reports are transcribed and represent a sequence of their thoughts and cognitive activities. These verbal reports are analysed to identify relevant segments of cognitive behaviours by the research subjects. The analysis results may be cross-examined (or validated through retrospective interviews with the research subjects). This paper offers a critical analysis of this research method, its approaches to data collection and analysis, strengths and limitations, and discusses its use in information systems research. The aim is to explore the use of protocol analysis in studying the creative requirements engineering process.<br /

    Using the Internet to improve university education

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via information and communication technologies, and flexible support by tele-tutoring. These principles are used in the MUNICS learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students may model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. For example, the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applications

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable
    • …
    corecore