509 research outputs found

    Future state maximisation as an intrinsic motivation for decision making

    Get PDF
    The concept of an “intrinsic motivation" is used in the psychology literature to distinguish between behaviour which is motivated by the expectation of an immediate, quantifiable reward (“extrinsic motivation") and behaviour which arises because it is inherently useful, interesting or enjoyable. Examples of the latter can include curiosity driven behaviour such as exploration and the accumulation of knowledge, as well as developing skills that might not be immediately useful but that have the potential to be re-used in a variety of different future situations. In this thesis, we examine a candidate for an intrinsic motivation with wide-ranging applicability which we refer to as “future state maximisation". Loosely speaking this is the idea that, taking everything else to be equal, decisions should be made so as to maximally keep one's options open, or to give the maximal amount of control over what one can potentially do in the future. Our goal is to study how this principle can be applied in a quantitative manner, as well as identifying examples of systems where doing so could be useful in either explaining or generating behaviour. We consider a number of examples, however our primary application is to a model of collective motion in which we consider a group of agents equipped with simple visual sensors, moving around in two dimensions. In this model, agents aim to make decisions about how to move so as to maximise the amount of control they have over the potential visual states that they can access in the future. We find that with each agent following this simple, low-level motivational principle a swarm spontaneously emerges in which the agents exhibit rich collective behaviour, remaining cohesive and highly-aligned. Remarkably, the emergent swarm also shares a number of features which are observed in real flocks of starlings, including scale free correlations and marginal opacity. We go on to explore how the model can be developed to allow us to manipulate and control the swarm, as well as looking at heuristics which are able to mimic future state maximisation whilst requiring significantly less computation, and so which could plausibly operate under animal cognition

    Unsupervised speech enhancement with diffusion-based generative models

    Full text link
    Recently, conditional score-based diffusion models have gained significant attention in the field of supervised speech enhancement, yielding state-of-the-art performance. However, these methods may face challenges when generalising to unseen conditions. To address this issue, we introduce an alternative approach that operates in an unsupervised manner, leveraging the generative power of diffusion models. Specifically, in a training phase, a clean speech prior distribution is learnt in the short-time Fourier transform (STFT) domain using score-based diffusion models, allowing it to unconditionally generate clean speech from Gaussian noise. Then, we develop a posterior sampling methodology for speech enhancement by combining the learnt clean speech prior with a noise model for speech signal inference. The noise parameters are simultaneously learnt along with clean speech estimation through an iterative expectationmaximisation (EM) approach. To the best of our knowledge, this is the first work exploring diffusion-based generative models for unsupervised speech enhancement, demonstrating promising results compared to a recent variational auto-encoder (VAE)-based unsupervised approach and a state-of-the-art diffusion-based supervised method. It thus opens a new direction for future research in unsupervised speech enhancement

    Learning object, grasping and manipulation activities using hierarchical HMMs

    Full text link
    This article presents a probabilistic algorithm for representing and learning complex manipulation activities performed by humans in everyday life. The work builds on the multi-level Hierarchical Hidden Markov Model (HHMM) framework which allows decomposition of longer-term complex manipulation activities into layers of abstraction whereby the building blocks can be represented by simpler action modules called action primitives. This way, human task knowledge can be synthesised in a compact, effective representation suitable, for instance, to be subsequently transferred to a robot for imitation. The main contribution is the use of a robust framework capable of dealing with the uncertainty or incomplete data inherent to these activities, and the ability to represent behaviours at multiple levels of abstraction for enhanced task generalisation. Activity data from 3D video sequencing of human manipulation of different objects handled in everyday life is used for evaluation. A comparison with a mixed generative-discriminative hybrid model HHMM/SVM (support vector machine) is also presented to add rigour in highlighting the benefit of the proposed approach against comparable state of the art techniques. © 2014 Springer Science+Business Media New York

    Nonparametric enrichment in computational and biological representations of distributions

    Get PDF
    This thesis proposes nonparametric techniques to enhance unsupervised learning methods in computational or biological contexts. Representations of intractable distributions and their relevant statistics are enhanced by nonparametric components trained to handle challenging estimation problems. The first part introduces a generic algorithm for learning generative latent variable models. In contrast to traditional variational learning, no representation for the intractable posterior distributions are computed, making it agnostic to the model structure and the support of latent variables. Kernel ridge regression is used to consistently estimate the gradient for learning. In many unsupervised tasks, this approach outperforms advanced alternatives based on the expectation-maximisation algorithm and variational approximate inference. In the second part, I train a model of data known as the kernel exponential family density. The kernel, used to describe smooth functions, is augmented by a parametric component trained using an efficient meta-learning procedure; meta-learning prevents overfitting as would occur using conventional routines. After training, the contours of the kernel become adaptive to the local geometry of the underlying density. Compared to maximum-likelihood learning, our method better captures the shape of the density, which is the desired quantity in many downstream applications. The final part sees how nonparametric ideas contribute to understanding uncertainty computation in the brain. First, I show that neural networks can learn to represent uncertainty using the distributed distributional code (DDC), a representation similar to the nonparametric kernel mean embedding. I then derive several DDC-based message-passing algorithms, including computations of filtering and real-time smoothing. The latter is a common neural computation embodied in many postdictive phenomena of perception in multiple modalities. The main idea behind these algorithms is least-squares regression, where the training data are simulated from an internal model. The internal model can be concurrently updated to follow the statistics in sensory stimuli, enabling adaptive inference

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies
    • …
    corecore