16 research outputs found

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Planetary Science Vision 2050 Workshop : February 27–28 and March 1, 2017, Washington, DC

    Get PDF
    This workshop is meant to provide NASA’s Planetary Science Division with a very long-range vision of what planetary science may look like in the future.Organizer, Lunar and Planetary Institute ; Conveners, James Green, NASA Planetary Science Division, Doris Daou, NASA Planetary Science Division ; Science Organizing Committee, Stephen Mackwell, Universities Space Research Association [and 14 others]PARTIAL CONTENTS: Exploration Missions to the Kuiper Belt and Oort Cloud--Future Mercury Exploration: Unique Science Opportunities from Our Solar System’s Innermost Planet--A Vision for Ice Giant Exploration--BAOBAB (Big and Outrageously Bold Asteroid Belt) Project--Asteroid Studies: A 35-Year Forecast--Sampling the Solar System: The Next Level of Understanding--A Ground Truth-Based Approach to Future Solar System Origins Research--Isotope Geochemistry for Comparative Planetology of Exoplanets--The Moon as a Laboratory for Biological Contamination Research--“Be Careful What You Wish For:” The Scientific, Practical, and Cultural Implications of Discovering Life in Our Solar System--The Importance of Particle Induced X-Ray Emission (PIXE) Analysis and Imaging to the Search for Life on the Ocean Worlds--Follow the (Outer Solar System) Water: Program Options to Explore Ocean Worlds--Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/ Biomedical Industries--On Neuromorphic Architectures for Efficient, Robust, and Adaptable Autonomy in Life Detection and Other Deep Space Missions

    Estudi de la coautoria de publicacions cientĂ­fiques entre UPC i cinc universitats dels Estats Units : Caltech, Stanford University, UC Davis, UC Irvine i UCLA

    Get PDF
    S'analitza la coautoria de la UPC amb autors vinculats a institucions acadèmiques dels Estats Units, per totes les àrees temàtiques, de gener de 2009 a juny de 2014.Postprint (published version

    Using the Spring Physical Model to Extend a Cooperative Caching Protocol for Many-Core Processors

    Get PDF
    International audienceAs the number of embedded cores grows up, the off-chip memory wall becomes an overwhelming bottleneck. As a consequence, it is more and more prevalent to efficiently exploit on-chip data storage. In a previous work, we proposed a data sliding mechanism that allows to store data onto our closest neighborhood, even under heavy stress loads. However, each cache block is allowed to migrate only one time to a neighbor's cache (e.g. 1-Chance Forwarding). In this paper, we propose an extension of our mechanism in order to expand the cooperative caching area. Our work is based on an adaptive physical model, where each cache block is considered as a mass connected to a spring. This technique constrains data migration according to the spring constant and the difference of work-loads between cores. This adaptive data sliding approach leads to a balanced spread of data on the chip and therefore improves on-chip storage. On-chip data access has been evaluated using an analytical approach. Results show that the extended data sliding increases the global cache hit rate on the chip, especially in the context of juxtaposed hot spots

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    1 Using Evolutive Summary Counters for Efficient Cooperative Caching in Search Engines

    Get PDF
    Abstract—We propose and analyze a distributed cooperative caching strategy based on the Evolutive Summary Counters (ESC), a new data structure that stores an approximated record of the data accesses in each computing node of a search engine. The ESC capture the frequency of accesses to the elements of a data collection, and the evolution of the access patterns for each node in a network of computers. The ESC can be efficiently summarized into what we call ESC-summaries to obtain approximate statistics of the document entries accessed by each computing node. We use the ESC-summaries to introduce two algorithms that manage our distributed caching strategy, one for the distribution of the cache contents, ESC-placement, and another one for the search of documents in the distributed cache, ESC-search. While the former improves the hit rate of the system and keeps a large ratio of data accesses local, the latter reduces the network traffic by restricting the number of nodes queried to find a document. We show that our cooperative caching approach outperforms state of the art models in both hit rate, throughput, and location recall for multiple scenarios, i.e., different query distributions and systems with varying degrees of complexity

    AFRANCI : multi-layer architecture for cognitive agents

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    corecore