715 research outputs found

    The age-redshift relation for Luminous Red Galaxies in the Sloan Digital Sky Survey

    Get PDF
    We present a detailed analysis of 17,852 quiescent, Luminous Red Galaxies (LRGs) selected from Sloan Digital Sky Survey (SDSS) Data Release Seven (DR7) spanning a redshift range of 0.0 < z < 0.4. These galaxies are co-added into four equal bins of velocity dispersion and luminosity to produce high signal-to-noise spectra (>100A^{-1}), thus facilitating accurate measurements of the standard Lick absorption-line indices. In particular, we have carefully corrected and calibrated these indices onto the commonly used Lick/IDS system, thus allowing us to compare these data with other measurements in the literature, and derive realistic ages, metallicities ([Z/H]) and alpha-element abundance ratios ([alpha/Fe]) for these galaxies using Simple Stellar Population (SSP) models. We use these data to study the relationship of these galaxy parameters with redshift, and find little evidence for evolution in metallicity or alpha-elements (especially for our intermediate mass samples). This demonstrates that our subsamples are consistent with pure passive evolving (i.e. no chemical evolution) and represent a homogeneous population over this redshift range. We also present the age-redshift relation for these LRGs and clearly see a decrease in their age with redshift (5 Gyrs over the redshift range studied here) which is fully consistent with the cosmological lookback times in a concordance Lambda CDM universe. We also see that our most massive sample of LRGs is the youngest compared to the lower mass galaxies. We provide these data now to help future cosmological and galaxy evolution studies of LRGs, and provide in the appendices of this paper the required methodology and information to calibrate SDSS spectra onto the Lick/IDS system.Comment: 26 pages, with several appendices containing data. Accepted for publication in MNRA

    The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues

    Full text link
    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires an expert knowledge of galaxy modelling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalogue suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light-cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO's features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.Comment: 17 pages, 11 figures, 2 tables; accepted for publication in ApJS. The Theoretical Astrophysical Observatory (TAO) is now open to the public at https://tao.asvo.org.au/. New simulations, models and tools will be added as they become available. Contact [email protected] if you have data you would like to make public through TAO. Feedback and suggestions are very welcom

    Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters

    Full text link
    We present a new approach to constrain galaxy physical parameters from the combined interpretation of stellar and nebular emission in wide ranges of observations. This approach relies on the Bayesian analysis of any type of galaxy spectral energy distribution using a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We focus on the constraints set by 5-band photometry and low- and medium-resolution spectroscopy at optical rest wavelengths on a set of physical parameters characterizing the stars and the interstellar medium. Since these parameters cannot be known a priori for any galaxy sample, we assess the accuracy to which they can be retrieved by simulating `pseudo-observations' using models with known parameters. Assuming that these models are good approximations of true galaxies, we find that the combined analysis of stellar and nebular emission in low-resolution galaxy spectra provides valuable constraints on all physical parameters. At higher resolution, the analysis of the combined stellar and nebular emission in 12,660 SDSS star-forming galaxies using our approach yields likelihood distributions of stellar mass, gas-phase oxygen abundance, optical depth of the dust and specific star formation rate similar to those obtained in previous separate analyses of the stellar and nebular emission at the original (twice higher) SDSS spectral resolution. We show that the constraints derived on galaxy physical parameters from these different types of observations depend sensitively on signal-to-noise ratio. Our approach can be extended to the analysis of any type of observation across the wavelength range covered by spectral evolution models. [abridged]Comment: 24 pages, 19 figures, accepted for publication in MNRAS. Full-resolution version available from ftp://ftp.iap.fr/pub/from_users/pacifici/paper_pacifici_hr.pd

    The Relation between Nuclear Activity and Stellar Mass in Galaxies

    Full text link
    The existence of correlations between nuclear properties of galaxies, such as the mass of their central black holes, and larger scale features, like the bulge mass and luminosity, represent a fundamental constraint on galaxy evolution. Although the actual reasons for these relations have not yet been identified, it is widely believed that they could stem from a connection between the processes that lead to black hole growth and stellar mass assembly. The problem of understanding how the processes of nuclear activity and star formation can affect each other became known to the literature as the Starburst-AGN connection. Despite years of investigation, the physical mechanisms which lie at the basis of this relation are known only in part. In this work, we analyze the problem of star formation and nuclear activity in a large sample of galaxies. We study the relations between the properties of the nuclear environments and of their host galaxies. We find that the mass of the stellar component within the galaxies of our sample is a critical parameter, that we have to consider in an evolutionary sequence, which provides further insight in the connection between AGN and star formation processes.Comment: 13 pages, 10 figures, accepted for publication on MNRAS. Reference to the mass derivation procedure correcte

    Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies

    Get PDF
    We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 < z < 1.6 and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates and metallicities. We find that as a whole, the hosts of SLSNe are a low-luminosity ( ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8 M_sun) population, with a high median specific star formation rate ( ~ 2 Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 + log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an accreting black hole in LGRBs.Comment: ApJ in press; updated to match accepted version. Some additional data added, discussion of selection effects expanded; conclusions unchanged. 22 pages in emulateapj forma

    P-MaNGA : full spectral fitting and stellar population maps from prototype observations

    Get PDF
    MC acknowledges support from a Royal Society University Research Fellowship.MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yearSDSS-IV survey that will obtain resolved spectroscopy from 3600 Å to10300 Å for a representative sample of over 10,000 nearby galaxies.In this paper, we derive spatially resolved stellar population properties and radial gradients by performing full spectral fitting of observed galaxy spectra from P-MaNGA, a prototype of the MaNGA instrument. These data include spectra for eighteen galaxies, covering a large range of morphological type. We derive age, metallicity, dust and stellar mass maps, and their radial gradients, using high spectral-resolution stellar population models, and assess the impact of varying the stellar library input to the models. We introduce a method to determine dust extinction which is able to give smooth stellar mass maps even in cases of high and spatially non-uniform dust attenuation.With the spectral fitting we produce detailed maps of stellar population properties which allow us to identify galactic features among this diverse sample such as spiral structure, smooth radial profiles with little azimuthal structure in spheroidal galaxies, and spatially distinct galaxy sub-components. In agreement with the literature, we find the gradients for galaxies identified as early-type to be on average flat in age, and negative (- 0.15 dex / Re ) in metallicity,whereas the gradients for late-type galaxies are on average negative in age (- 0.39 dex / Re ) and flat in metallicity. We demonstrate howdifferent levels of data quality change the precision with which radialgradients can be measured. We show how this analysis, extended to thelarge numbers of MaNGA galaxies, will have the potential to shed lighton galaxy structure and evolution.PostprintPeer reviewe

    eROSITA Science Book: Mapping the Structure of the Energetic Universe

    Full text link
    eROSITA is the primary instrument on the Russian SRG mission. In the first four years of scientific operation after its launch, foreseen for 2014, it will perform a deep survey of the entire X-ray sky. In the soft X-ray band (0.5-2 keV), this will be about 20 times more sensitive than the ROSAT all sky survey, while in the hard band (2-10 keV) it will provide the first ever true imaging survey of the sky at those energies. Such a sensitive all-sky survey will revolutionize our view of the high-energy sky, and calls for major efforts in synergic, multi-wavelength wide area surveys in order to fully exploit the scientific potential of the X-ray data. The design-driving science of eROSITA is the detection of very large samples (~10^5 objects) of galaxy clusters out to redshifts z>1, in order to study the large scale structure in the Universe, test and characterize cosmological models including Dark Energy. eROSITA is also expected to yield a sample of around 3 millions Active Galactic Nuclei, including both obscured and un-obscured objects, providing a unique view of the evolution of supermassive black holes within the emerging cosmic structure. The survey will also provide new insights into a wide range of astrophysical phenomena, including accreting binaries, active stars and diffuse emission within the Galaxy, as well as solar system bodies that emit X-rays via the charge exchange process. Finally, such a deep imaging survey at high spectral resolution, with its scanning strategy sensitive to a range of variability timescales from tens of seconds to years, will undoubtedly open up a vast discovery space for the study of rare, unpredicted, or unpredictable high-energy astrophysical phenomena. In this living document we present a comprehensive description of the main scientific goals of the mission, with strong emphasis on the early survey phases.Comment: 84 Pages, 52 Figures. Published online as MPE document. Edited by S. Allen. G. Hasinger and K. Nandra. Few minor corrections (typos) and updated reference

    Recoiled star clusters in the Milky Way halo: N-body simulations and a candidate search through SDSS

    Full text link
    During the formation of the Milky Way, > 100 central black holes (BHs) may have been ejected from their small host galaxies as a result of asymmetric gravitational wave emission. We previously showed that many of these BHs are surrounded by a compact cluster of stars that remained bound to the BH during the ejection process. In this paper, we perform long term N-body simulations of these star clusters to determine the distribution of stars in these clusters today. These numerical simulations, reconciled with our Fokker-Planck simulations, show that stellar density profile follows a power-law with slope ~ -2.15, and show that large angle scattering and tidal disruptions remove 20 - 90% of the stars by ~10^10 yr. We then analyze the photometric and spectroscopic properties of recoiled clusters accounting for the small number of stars in the clusters. We use our results to perform a systematic search for candidates in the Sloan Digital Sky Survey. We find no spectroscopic candidates, in agreement with our expectations from the completeness of the survey. Using generic photometric models of present day clusters we identify ~100 recoiling cluster candidates. Follow-up spectroscopy would be able to determine the nature of these candidates.Comment: Final submission to MNRAS. 15 Pages, 10 figures. Includes new material on resonant relaxation and incorporates recommendations of the refere

    Hypercompact stellar clusters: morphological renditions and spectro-photometric models

    Get PDF
    Numerical relativity predicts that the coalescence of a black hole-binary causes the newly formed black hole to recoil, and evidence for such recoils has been found in the gravitational waves observed during the merger of stellar-mass black holes. Recoiling (super)massive black holes are expected to reside in hypercompact stellar clusters (HCSCs). Simulations of galaxy assembly predict that hundreds of HCSCs should be present in the halo of a Milky Way-type galaxy, and a fraction of those around the Milky Way should have magnitudes within the sensitivity limit of existing surveys. However, recoiling black holes and their HCSCs are still waiting to be securely identified. With the goal of enabling searches through recent and forthcoming databases, we improve over existing literature to produce realistic renditions of HCSCs bound to black holes with a mass of 105^{5} M_{\odot}. Including the effects of a population of blue stragglers, we simulate their appearance in Pan-STARRS and in forthcoming EuclidEuclid images. We also derive broad-band spectra and the corresponding multi-wavelength colours, finding that the great majority of the simulated HCSCs fall on the colour-colour loci defined by stars and galaxies, with their spectra resembling those of giant K-type stars. We discuss the clusters properties, search strategies, and possible interlopers.Comment: Accepted for publication on MNRAS, 17 pages, 7 figure
    corecore