1,505 research outputs found

    Using Event-Based Style for Developing M2M Applications

    Get PDF
    International audienceIn this paper, we introduce how to write M2M applications by using INI, a programming language specified and implemented by ourselves that supports event-based style. With event-based programming, all M2M communication can be handled and scheduled. Programmers may use existing built-in events or define their own events. We apply our approach in a real M2M gateway, which allows gathering and exchanging information between sensors and machines in the network. The results shows that our work proposes a concise and elegant alternative and complement to industrial state-of-the-art languages such as Java or C/C++

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Internet of Things Cloud: Architecture and Implementation

    Full text link
    The Internet of Things (IoT), which enables common objects to be intelligent and interactive, is considered the next evolution of the Internet. Its pervasiveness and abilities to collect and analyze data which can be converted into information have motivated a plethora of IoT applications. For the successful deployment and management of these applications, cloud computing techniques are indispensable since they provide high computational capabilities as well as large storage capacity. This paper aims at providing insights about the architecture, implementation and performance of the IoT cloud. Several potential application scenarios of IoT cloud are studied, and an architecture is discussed regarding the functionality of each component. Moreover, the implementation details of the IoT cloud are presented along with the services that it offers. The main contributions of this paper lie in the combination of the Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) servers to offer IoT services in the architecture of the IoT cloud with various techniques to guarantee high performance. Finally, experimental results are given in order to demonstrate the service capabilities of the IoT cloud under certain conditions.Comment: 19pages, 4figures, IEEE Communications Magazin

    Self-management of machine-to-machine communications: a multi-models approach

    Get PDF
    International audienceMachine-to-Machine (M2M) paradigm apply to systems composed by numerous devices sharing information and making cooperative decisions with little or no human intervention. The M2M standard defined by the European Telecommunications Standards Institute (ETSI) is the only one providing an end-to-end view of the global M2M architecture. Noticeably, it furnishes a standardised framework for inter-operable M2M services that satisfies most of M2M modelling requirements. However, and even though M2M systems usually operate in highly evolving contexts, this standard does not address the issue of system adaptations. It is furthermore unsuitable for building self-managed systems. This paper introduces a multi-model approach for modelling manageable M2M systems. Said approach consists in a formal graph-based model on top of the ETSI M2M standard, alongside bi-directional updates that ensure layer coherency. Its fitness for enforcing self-management properties is demonstrated by designing high-level reconfiguration rules. Finally, its applicability is illustrated and evaluated using a smart-metering application

    Technologies of Internet and web of things

    Get PDF

    HILT : High-Level Thesaurus Project. Phase IV and Embedding Project Extension : Final Report

    Get PDF
    Ensuring that Higher Education (HE) and Further Education (FE) users of the JISC IE can find appropriate learning, research and information resources by subject search and browse in an environment where most national and institutional service providers - usually for very good local reasons - use different subject schemes to describe their resources is a major challenge facing the JISC domain (and, indeed, other domains beyond JISC). Encouraging the use of standard terminologies in some services (institutional repositories, for example) is a related challenge. Under the auspices of the HILT project, JISC has been investigating mechanisms to assist the community with this problem through a JISC Shared Infrastructure Service that would help optimise the value obtained from expenditure on content and services by facilitating subject-search-based resource sharing to benefit users in the learning and research communities. The project has been through a number of phases, with work from earlier phases reported, both in published work elsewhere, and in project reports (see the project website: http://hilt.cdlr.strath.ac.uk/). HILT Phase IV had two elements - the core project, whose focus was 'to research, investigate and develop pilot solutions for problems pertaining to cross-searching multi-subject scheme information environments, as well as providing a variety of other terminological searching aids', and a short extension to encompass the pilot embedding of routines to interact with HILT M2M services in the user interfaces of various information services serving the JISC community. Both elements contributed to the developments summarised in this report

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    An ideal IoT solution for real-time web monitoring

    Get PDF
    For the internet of things (IoT) to fully emerge, it is necessary to design a suitable system architecture and specific protocols for this environment. The former to provide horizontal solutions, breaking away the current paradigm of silos solutions, and thus, allowing the creation of open and interoperable systems; while the latter will offer efficient and scalable communications. This paper presents the latest standards and ongoing efforts to develop specific protocols for IoT. Furthermore, this paper presents a new system, with the most recent standards for IoT. Its design, implementation and evaluation will be also described. The proposed system is based on the latest ETSI M2M specification (ETSI TC M2M in ETSI TS 103 093 V2.1.1.http://www.etsi.org/deliver/etsi_ts/103000_103099/103093/02.01.01_60/ts_103093v020101p.pdf, 2013b) and the MQTT protocol (IBM, Eurotech in MQTT V3.1 Protocol Specification pp 1-42, http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific. pdf, 2010). With this solution it is possible to show how we can create new applications to run over it and the importance of designing specifically tailored for IoT communication protocols in order to support real-time applications.- This project was funded by Fundo Europeu de Desenvolvimento Regional (FEDER), by Programa Operacional Factores de Competitividade (POFC) - COMPETE and by Fundacao para a Ciencia eTecnologia, on the Scope of projects: PEstC/EEI/UI0319/2015 and PEstC/EEI/UI0027/2015. This paper is a result of the project "SmartEGOV: Harnessing EGOV for Smart Governance (Foundations, methods, Tools) / NORTE-01-0145-FEDER-000037", supported by Norte Portugal Regional Operational Programme(NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (EFDR).info:eu-repo/semantics/publishedVersio
    • 

    corecore