12,119 research outputs found

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them

    The AADL Constraint Annex

    Get PDF
    The SAE Architecture Analysis and Design Language -- AADL has been defined with a strong focus on the careful modeling of critical real-time embedded systems. Around this formalism, several analysis tools have been defined, e.g. scheduling, safety, security or performance. The SAE AS2-C wishes to complement the AADL with a versatile language to support project-specific analysis. The Model Constraints Sublanguage Annex (or in short the Constraints Annex) provides a standard AADL sublanguage extension with three major objectives: •to allow specification of project specific AADL language subsets and enforce consistent use of the language subset over all classifiers in a package and all packages in a project •to allow specification of project specific Structural Assertions on AADL instance models of component implementations and specification of Structural Assertions on classifier types (component types, feature group types and their extensions) •to allow the specification of Behavior Assertions for feature groups, component types and component implementations, grouped as Assumptions and Guarantees. Assumptions group together Behavior Assertions describing expected behavior of the environment in which a component will operate. Guarantees group together Behavior Assertions which must be honored by all instances of the component, assuming that it is deployed into an environment that honors the Assumptions Behavior Assertions. In this presentation, we will provide an overview of this language, and report on ongoing implementation efforts to date for this language

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure

    Unifying Requirements and Code: an Example

    Full text link
    Requirements and code, in conventional software engineering wisdom, belong to entirely different worlds. Is it possible to unify these two worlds? A unified framework could help make software easier to change and reuse. To explore the feasibility of such an approach, the case study reported here takes a classic example from the requirements engineering literature and describes it using a programming language framework to express both domain and machine properties. The paper describes the solution, discusses its benefits and limitations, and assesses its scalability.Comment: 13 pages; 7 figures; to appear in Ershov Informatics Conference, PSI, Kazan, Russia (LNCS), 201

    Enriching OCL Using Observational Mu-Calculus

    Get PDF
    Abstract. The Object Constraint Language is a textual specificatio

    Contracts and Behavioral Patterns for SoS: The EU IP DANSE approach

    Full text link
    This paper presents some of the results of the first year of DANSE, one of the first EU IP projects dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming from the formal verification area. At the high level, we use UPDM, the system model provided by the british army as well as a new type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset combined with recent advances from the area of statistical model checking. The approach has been applied to a case study developed at EADS Innovation Works.Comment: In Proceedings AiSoS 2013, arXiv:1311.319
    corecore