1,190 research outputs found

    Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts

    Get PDF
    Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks

    Network analysis of unstructured EHR data for clinical research.

    Get PDF
    In biomedical research, network analysis provides a conceptual framework for interpreting data from high-throughput experiments. For example, protein-protein interaction networks have been successfully used to identify candidate disease genes. Recently, advances in clinical text processing and the increasing availability of clinical data have enabled analogous analyses on data from electronic medical records. We constructed networks of diseases, drugs, medical devices and procedures using concepts recognized in clinical notes from the Stanford clinical data warehouse. We demonstrate the use of the resulting networks for clinical research informatics in two ways-cohort construction and outcomes analysis-by examining the safety of cilostazol in peripheral artery disease patients as a use case. We show that the network-based approaches can be used for constructing patient cohorts as well as for analyzing differences in outcomes by comparing with standard methods, and discuss the advantages offered by network-based approaches

    A framework for employing longitudinally collected multicenter electronic health records to stratify heterogeneous patient populations on disease history

    Get PDF
    Objective To facilitate patient disease subset and risk factor identification by constructing a pipeline which is generalizable, provides easily interpretable results, and allows replication by overcoming electronic health records (EHRs) batch effects. Material and Methods We used 1872 billing codes in EHRs of 102 880 patients from 12 healthcare systems. Using tools borrowed from single-cell omics, we mitigated center-specific batch effects and performed clustering to identify patients with highly similar medical history patterns across the various centers. Our visualization method (PheSpec) depicts the phenotypic profile of clusters, applies a novel filtering of noninformative codes (Ranked Scope Pervasion), and indicates the most distinguishing features. Results We observed 114 clinically meaningful profiles, for example, linking prostate hyperplasia with cancer and diabetes with cardiovascular problems and grouping pediatric developmental disorders. Our framework identified disease subsets, exemplified by 6 "other headache" clusters, where phenotypic profiles suggested different underlying mechanisms: migraine, convulsion, injury, eye problems, joint pain, and pituitary gland disorders. Phenotypic patterns replicated well, with high correlations of >= 0.75 to an average of 6 (2-8) of the 12 different cohorts, demonstrating the consistency with which our method discovers disease history profiles. Discussion Costly clinical research ventures should be based on solid hypotheses. We repurpose methods from single-cell omics to build these hypotheses from observational EHR data, distilling useful information from complex data. Conclusion We establish a generalizable pipeline for the identification and replication of clinically meaningful (sub)phenotypes from widely available high-dimensional billing codes. This approach overcomes datatype problems and produces comprehensive visualizations of validation-ready phenotypes.Molecular Epidemiolog

    Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review

    Get PDF
    Novel approaches that complement and go beyond evidence-based medicine are required in the domain of chronic diseases, given the growing incidence of such conditions on the worldwide population. A promising avenue is the secondary use of electronic health records (EHRs), where patient data are analyzed to conduct clinical and translational research. Methods based on machine learning to process EHRs are resulting in improved understanding of patient clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, a wealth of clinical histories remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on the development of natural language processing (NLP) methods to automatically transform clinical text into structured clinical data that can guide clinical decisions and potentially delay or prevent disease onset

    Methods for Stratification and Validation Cohorts: A Scoping Review

    Get PDF
    Personalized medicine requires large cohorts for patient stratification and validation of patient clustering. However, standards and harmonized practices on the methods and tools to be used for the design and management of cohorts in personalized medicine remain to be defined. This study aims to describe the current state-of-the-art in this area. A scoping review was conducted searching in PubMed, EMBASE, Web of Science, Psycinfo and Cochrane Library for reviews about tools and methods related to cohorts used in personalized medicine. The search focused on cancer, stroke and Alzheimer's disease and was limited to reports in English, French, German, Italian and Spanish published from 2005 to April 2020. The screening process was reported through a PRISMA flowchart. Fifty reviews were included, mostly including information about how data were generated (25/50) and about tools used for data management and analysis (24/50). No direct information was found about the quality of data and the requirements to monitor associated clinical data. A scarcity of information and standards was found in specific areas such as sample size calculation. With this information, comprehensive guidelines could be developed in the future to improve the reproducibility and robustness in the design and management of cohorts in personalized medicine studies

    In silico phenotyping via co-training for improved phenotype prediction from genotype

    Get PDF
    Motivation: Predicting disease phenotypes from genotypes is a key challenge in medical applications in the postgenomic era. Large training datasets of patients that have been both genotyped and phenotyped are the key requisite when aiming for high prediction accuracy. With current genotyping projects producing genetic data for hundreds of thousands of patients, large-scale phenotyping has become the bottleneck in disease phenotype prediction. Results: Here we present an approach for imputing missing disease phenotypes given the genotype of a patient. Our approach is based on co-training, which predicts the phenotype of unlabeled patients based on a second class of information, e.g. clinical health record information. Augmenting training datasets by this type of in silico phenotyping can lead to significant improvements in prediction accuracy. We demonstrate this on a dataset of patients with two diagnostic types of migraine, termed migraine with aura and migraine without aura, from the International Headache Genetics Consortium. Conclusions: Imputing missing disease phenotypes for patients via co-training leads to larger training datasets and improved prediction accuracy in phenotype prediction. Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/co-training.html Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Critical Analysis of Clinical Document Clustering Technique with Special Reference to Non-Matrix Factorization

    Get PDF
    Clinical records containing significant prescription and side effect data, a huge number of documents are normally analyzed. A critical piece of the data in those reports contains unstructured substance, whose examination by PC assessors is difficult to be performed. We proposed a joining system for isolating medication names and sign names from clinical notes by applying Nonnegative Matrix Factorization (NMF) and multi-see NMF to bundle clinical notes into vital gatherings reliant on test incorporate networks. Our exploratory outcomes demonstrate that multi-see NMF is a best technique for clinical record bunching. In addition, we find that utilizing extricated prescription/side effect names to group clinical archives beats simply utilizing words. Bunching calculations are regularly utilized for exploratory information examination. Vast measure of information investigated

    Improving patient record search: A meta-data based approach

    Get PDF
    The International Classification of Diseases (ICD) is a type of meta-data found in many Electronic Patient Records. Research to explore the utility of these codes in medical Information Retrieval (IR) applications is new, and many areas of investigation remain, including the question of how reliable the assignment of the codes has been. This paper proposes two uses of the ICD codes in two different contexts of search: Pseudo-Relevance Judgments (PRJ) and Pseudo-Relevance Feedback (PRF). We find that our approach to evaluate the TREC challenge runs using simulated relevance judgments has a positive correlation with the TREC official results, and our proposed technique for performing PRF based on the ICD codes significantly outperforms a traditional PRF approach. The results are found to be consistent over the two years of queries from the TREC medical test collection
    • …
    corecore