153,036 research outputs found

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Plan recognition for space telerobotics

    Get PDF
    Current research on space telerobots has largely focused on two problem areas: executing remotely controlled actions (the tele part of telerobotics) or planning to execute them (the robot part). This work has largely ignored one of the key aspects of telerobots: the interaction between the machine and its operator. For this interaction to be felicitous, the machine must successfully understand what the operator is trying to accomplish with particular remote-controlled actions. Only with the understanding of the operator's purpose for performing these actions can the robot intelligently assist the operator, perhaps by warning of possible errors or taking over part of the task. There is a need for such an understanding in the telerobotics domain and an intelligent interface being developed in the chemical process design domain addresses the same issues

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Towards responsive Sensitive Artificial Listeners

    Get PDF
    This paper describes work in the recently started project SEMAINE, which aims to build a set of Sensitive Artificial Listeners ā€“ conversational agents designed to sustain an interaction with a human user despite limited verbal skills, through robust recognition and generation of non-verbal behaviour in real-time, both when the agent is speaking and listening. We report on data collection and on the design of a system architecture in view of real-time responsiveness

    Problem-Solving Knowledge Mining from Usersā€™\ud Actions in an Intelligent Tutoring System

    Get PDF
    In an intelligent tutoring system (ITS), the domain expert should provide\ud relevant domain knowledge to the tutor so that it will be able to guide the\ud learner during problem solving. However, in several domains, this knowledge is\ud not predetermined and should be captured or learned from expert users as well as\ud intermediate and novice users. Our hypothesis is that, knowledge discovery (KD)\ud techniques can help to build this domain intelligence in ITS. This paper proposes\ud a framework to capture problem-solving knowledge using a promising approach\ud of data and knowledge discovery based on a combination of sequential pattern\ud mining and association rules discovery techniques. The framework has been implemented\ud and is used to discover new meta knowledge and rules in a given domain\ud which then extend domain knowledge and serve as problem space allowing\ud the intelligent tutoring system to guide learners in problem-solving situations.\ud Preliminary experiments have been conducted using the framework as an alternative\ud to a path-planning problem solver in CanadarmTutor
    • ā€¦
    corecore