4,754 research outputs found

    Safety Culture and Collective Commitment in Organizational Context

    Get PDF
    In nuclear power plants and process industry safety is the number one priority over profitability and productivity. In such high-risk environments where individuals work independently their decisions can lead to dangerous situations to coworkers, organizations or even to society. In many cases, a loose commitment to occupational role causes individual to perceive safety culture as something too much detailed which makes them to lose focus on what is important regarding the safety culture. In our view, this is a problem for collective safety culture to raise to a higher level. To understand organizations collective safety culture and safety consciousness it is important to analyze employees individually to see what are their internal feelings, understanding and aims. This paper presents a joint analysis of organization’s safety culture and commitment towards their organization by utilizing also Company Democracy Model (CDM)

    Phronetic leadership style evaluation with a fuzzy logic application

    Get PDF
    The purpose of leadership style assessments is to determine the basic features and characteristics of leadership behaviours and to reveal the leader’s personality traits and abilities and to increase their self-awareness. The style can be, for example, democratic, autocratic, bureaucratic, laissez-faire, strategic, visionary, transformational, or transactional. However, ordinary assessments do not help leaders analyze their knowledge and wisdom behind their behaviours. The Wisdom Cube seeks to explain wisdom through the four dimensions of wisdom and provides a practical way of understanding the knowledge and wisdom in leadership. By utilising the dimensions and planes of the Wisdom Cube, we can find the way from data handling, information processing, and knowledge creation to wisdom generation. The aim of this research is, therefore, to reveal the ontology of the phronetic leader and to create a practical evaluation tool for leaders. The content of the article covers the elements of the Wisdom Cube, presents related efforts to measure and analyze phronetic leadership characteristics, and shows the practical results of the first test runs with the fuzzy logic-based application. The personal deep understanding of the leadership traits may then help the leaders to turn their current leadership styles more phronetic

    Assessing Ambiguity of Context Data in Intelligent Environments: Towards a More Reliable Context Managing System

    Get PDF
    Modeling and managing correctly the user context in Smart Environments is important to achieve robust and reliable systems. When modeling reality we must take into account its ambiguous nature. Considering the uncertainty and vagueness in context data information it is possible to attain a more precise picture of the environment, thus leading to a more accurate inference process. To achieve these goals we present an ontology that models the ambiguity in intelligent environments and a data fusion and inference process that takes advantage of that extra information to provide better results. Our system can assess the certainty of the captured measurements, discarding the unreliable ones and combining the rest into a unified vision of the current user context. It also models the vagueness of the system, combining it with the uncertainty to obtain a richer inference process

    On the Role of Context and Subjectivity on Scientific Information Systems

    Get PDF
    The explicit representation of context and subjectivity enables an information system to support multiple interpretations of the data it records. This is a crucial aspect of learning and innovation within scientific information systems. We present an ontology-based framework for context and subjectivity that integrates two lines of research: data provenance and ontological foundations of the Semantic Web. Data provenance provides a set of constructs for representing data history. We extend the definition of these constructs in order to describe multiple viewpoints or interpretations held within a domain. The W7 model, the Toulmin model, and the Proof Markup Language (PML) provide the Interlingua for creating multiple viewpoints of data in a machine-readable and sharable form. Example use cases in space sciences are used to demonstrate the feasibility and value of our approach

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    Get PDF
    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.This work was funded by TUCS (Turku Centre for Computer Science), Finnish Cultural Foundation, Nokia Foundation, Google Anita Borg Scholarship, CEI BioTIC Project CEI2013-P-3, Contrato-Programa of Faculty of Education, Economy and Technology of Ceuta and Project TIN2012-30939 from National I+D Research Program (Spain). We also thank Fernando Bobillo for his support with FuzzyOWL and FuzzyDL tools

    Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.

    Get PDF
    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment¿s reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy
    corecore