675 research outputs found

    Novel Deep Learning Techniques For Computer Vision and Structure Health Monitoring

    Get PDF
    This thesis proposes novel techniques in building a generic framework for both the regression and classification tasks in vastly different applications domains such as computer vision and civil engineering. Many frameworks have been proposed and combined into a complex deep network design to provide a complete solution to a wide variety of problems. The experiment results demonstrate significant improvements of all the proposed techniques towards accuracy and efficiency

    Investigation of new learning methods for visual recognition

    Get PDF
    Visual recognition is one of the most difficult and prevailing problems in computer vision and pattern recognition due to the challenges in understanding the semantics and contents of digital images. Two major components of a visual recognition system are discriminatory feature representation and efficient and accurate pattern classification. This dissertation therefore focuses on developing new learning methods for visual recognition. Based on the conventional sparse representation, which shows its robustness for visual recognition problems, a series of new methods is proposed. Specifically, first, a new locally linear K nearest neighbor method, or LLK method, is presented. The LLK method derives a new representation, which is an approximation to the ideal representation, by optimizing an objective function based on a host of criteria for sparsity, locality, and reconstruction. The novel representation is further processed by two new classifiers, namely, an LLK based classifier (LLKc) and a locally linear nearest mean based classifier (LLNc), for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Second, a new generative and discriminative sparse representation (GDSR) method is proposed by taking advantage of both a coarse modeling of the generative information and a modeling of the discriminative information. The proposed GDSR method integrates two new criteria, namely, a discriminative criterion and a generative criterion, into the conventional sparse representation criterion. A new generative and discriminative sparse representation based classification (GDSRc) method is then presented based on the derived new representation. Finally, a new Score space based multiple Metric Learning (SML) method is presented for a challenging visual recognition application, namely, recognizing kinship relations or kinship verification. The proposed SML method, which goes beyond the conventional Mahalanobis distance metric learning, not only learns the distance metric but also models the generative process of features by taking advantage of the score space. The SML method is optimized by solving a constrained, non-negative, and weighted variant of the sparse representation problem. To assess the feasibility of the proposed new learning methods, several visual recognition tasks, such as face recognition, scene recognition, object recognition, computational fine art analysis, action recognition, fine grained recognition, as well as kinship verification are applied. The experimental results show that the proposed new learning methods achieve better performance than the other popular methods

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    Contribution to supervised representation learning: algorithms and applications.

    Get PDF
    278 p.In this thesis, we focus on supervised learning methods for pattern categorization. In this context, itremains a major challenge to establish efficient relationships between the discriminant properties of theextracted features and the inter-class sparsity structure.Our first attempt to address this problem was to develop a method called "Robust Discriminant Analysiswith Feature Selection and Inter-class Sparsity" (RDA_FSIS). This method performs feature selectionand extraction simultaneously. The targeted projection transformation focuses on the most discriminativeoriginal features while guaranteeing that the extracted (or transformed) features belonging to the sameclass share a common sparse structure, which contributes to small intra-class distances.In a further study on this approach, some improvements have been introduced in terms of theoptimization criterion and the applied optimization process. In fact, we proposed an improved version ofthe original RDA_FSIS called "Enhanced Discriminant Analysis with Class Sparsity using GradientMethod" (EDA_CS). The basic improvement is twofold: on the first hand, in the alternatingoptimization, we update the linear transformation and tune it with the gradient descent method, resultingin a more efficient and less complex solution than the closed form adopted in RDA_FSIS.On the other hand, the method could be used as a fine-tuning technique for many feature extractionmethods. The main feature of this approach lies in the fact that it is a gradient descent based refinementapplied to a closed form solution. This makes it suitable for combining several extraction methods andcan thus improve the performance of the classification process.In accordance with the above methods, we proposed a hybrid linear feature extraction scheme called"feature extraction using gradient descent with hybrid initialization" (FE_GD_HI). This method, basedon a unified criterion, was able to take advantage of several powerful linear discriminant methods. Thelinear transformation is computed using a descent gradient method. The strength of this approach is thatit is generic in the sense that it allows fine tuning of the hybrid solution provided by different methods.Finally, we proposed a new efficient ensemble learning approach that aims to estimate an improved datarepresentation. The proposed method is called "ICS Based Ensemble Learning for Image Classification"(EM_ICS). Instead of using multiple classifiers on the transformed features, we aim to estimate multipleextracted feature subsets. These were obtained by multiple learned linear embeddings. Multiple featuresubsets were used to estimate the transformations, which were ranked using multiple feature selectiontechniques. The derived extracted feature subsets were concatenated into a single data representationvector with strong discriminative properties.Experiments conducted on various benchmark datasets ranging from face images, handwritten digitimages, object images to text datasets showed promising results that outperformed the existing state-ofthe-art and competing methods

    A Bi-level Nonlinear Eigenvector Algorithm for Wasserstein Discriminant Analysis

    Full text link
    Much like the classical Fisher linear discriminant analysis, Wasserstein discriminant analysis (WDA) is a supervised linear dimensionality reduction method that seeks a projection matrix to maximize the dispersion of different data classes and minimize the dispersion of same data classes. However, in contrast, WDA can account for both global and local inter-connections between data classes using a regularized Wasserstein distance. WDA is formulated as a bi-level nonlinear trace ratio optimization. In this paper, we present a bi-level nonlinear eigenvector (NEPv) algorithm, called WDA-nepv. The inner kernel of WDA-nepv for computing the optimal transport matrix of the regularized Wasserstein distance is formulated as an NEPv, and meanwhile the outer kernel for the trace ratio optimization is also formulated as another NEPv. Consequently, both kernels can be computed efficiently via self-consistent-field iterations and modern solvers for linear eigenvalue problems. Comparing with the existing algorithms for WDA, WDA-nepv is derivative-free and surrogate-model-free. The computational efficiency and applications in classification accuracy of WDA-nepv are demonstrated using synthetic and real-life datasets

    KPCA Plus LDA : a complete kernel Fisher discriminant framework for feature extraction and recognition

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Face recognition using multiple features in different color spaces

    Get PDF
    Face recognition as a particular problem of pattern recognition has been attracting substantial attention from researchers in computer vision, pattern recognition, and machine learning. The recent Face Recognition Grand Challenge (FRGC) program reveals that uncontrolled illumination conditions pose grand challenges to face recognition performance. Most of the existing face recognition methods use gray-scale face images, which have been shown insufficient to tackle these challenges. To overcome this challenging problem in face recognition, this dissertation applies multiple features derived from the color images instead of the intensity images only. First, this dissertation presents two face recognition methods, which operate in different color spaces, using frequency features by means of Discrete Fourier Transform (DFT) and spatial features by means of Local Binary Patterns (LBP), respectively. The DFT frequency domain consists of the real part, the imaginary part, the magnitude, and the phase components, which provide the different interpretations of the input face images. The advantage of LBP in face recognition is attributed to its robustness in terms of intensity-level monotonic transformation, as well as its operation in the various scale image spaces. By fusing the frequency components or the multi-resolution LBP histograms, the complementary feature sets can be generated to enhance the capability of facial texture description. This dissertation thus uses the fused DFT and LBP features in two hybrid color spaces, the RIQ and the VIQ color spaces, respectively, for improving face recognition performance. Second, a method that extracts multiple features in the CID color space is presented for face recognition. As different color component images in the CID color space display different characteristics, three different image encoding methods, namely, the patch-based Gabor image representation, the multi-resolution LBP feature fusion, and the DCT-based multiple face encodings, are presented to effectively extract features from the component images for enhancing pattern recognition performance. To further improve classification performance, the similarity scores due to the three color component images are fused for the final decision making. Finally, a novel image representation is also discussed in this dissertation. Unlike a traditional intensity image that is directly derived from a linear combination of the R, G, and B color components, the novel image representation adapted to class separability is generated through a PCA plus FLD learning framework from the hybrid color space instead of the RGB color space. Based upon the novel image representation, a multiple feature fusion method is proposed to address the problem of face recognition under the severe illumination conditions. The aforementioned methods have been evaluated using two large-scale databases, namely, the Face Recognition Grand Challenge (FRGC) version 2 database and the FERET face database. Experimental results have shown that the proposed methods improve face recognition performance upon the traditional methods using the intensity images by large margins and outperform some state-of-the-art methods
    corecore