1,587 research outputs found

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Some Considerations about Modern Database Machines

    Get PDF
    Optimizing the two computing resources of any computing system - time and space - has al-ways been one of the priority objectives of any database. A current and effective solution in this respect is the computer database. Optimizing computer applications by means of database machines has been a steady preoccupation of researchers since the late seventies. Several information technologies have revolutionized the present information framework. Out of these, those which have brought a major contribution to the optimization of the databases are: efficient handling of large volumes of data (Data Warehouse, Data Mining, OLAP – On Line Analytical Processing), the improvement of DBMS – Database Management Systems facilities through the integration of the new technologies, the dramatic increase in computing power and the efficient use of it (computer networks, massive parallel computing, Grid Computing and so on). All these information technologies, and others, have favored the resumption of the research on database machines and the obtaining in the last few years of some very good practical results, as far as the optimization of the computing resources is concerned.Database Optimization, Database Machines, Data Warehouse, OLAP – On Line Analytical Processing, OLTP – On Line Transaction Processing, Parallel Processing
    • …
    corecore