69,906 research outputs found

    CGAAL: Distributed On-The-Fly ATL Model Checker with Heuristics

    Get PDF
    We present CGAAL, our efficient on-the-fly model checker for alternating-time temporal logic (ATL) on concurrent game structures (CGS). We present how our tool encodes ATL as extended dependency graphs with negation edges, and employs the distributed on-the-fly algorithm by Dalsgaard et al. Our tool offers multiple novel search strategies for the algorithm, including DHS which is inspired by PageRank and uses the in-degree of configurations as an heuristic, IHS which estimates instability of assignment values, and LPS which estimates the distance to a state satisfying the constituent property using linear programming. CGS are input using our modeling language LCGS, where composition and synchronisation are easily described. We prove the correctness of our encoding, and our experiments show that our tool CGAAL is often one to three orders of magnitude faster than the popular tool PRISM-games on case-studies from PRISM’s documentation and among case-studies we have developed. In our evaluation we also compare and evaluate our search strategies, and find that our custom search strategies are often significantly faster than the usual breadth-first and depth-first search strategies.We present CGAAL, our efficient on-the-fly model checker for alternating-time temporal logic (ATL) on concurrent game structures (CGS). We present how our tool encodes ATL as extended dependency graphs with negation edges and employs the distributed on-the-fly algorithm by Dalsgaard et al. Our tool offers multiple novel search strategies for the algorithm, including DHS which is inspired by PageRank and uses the in-degree of configurations as a heuristic, IHS which estimates instability of assignment values, and LPS which estimates the distance to a state satisfying the constituent property using linear programming. CGS are input using our modelling language LCGS, where composition and synchronisation are easily described. We prove the correctness of our encoding, and our experiments show that our tool CGAAL is often one to three orders of magnitude faster than the popular tool PRISM-games on case studies from PRISM’s documentation and among case studies we have developed. In our evaluation, we also compare and evaluate our search strategies, and find that our custom search strategies are often significantly faster than the usual breadth-first and depth-first search strategies.</p

    Searching Optimal Route for Public Transportation Of Palembang City Using A*Algorithm

    Get PDF
    Palembang is the capital city South Sumatra Province as well as big city. For a big city, transportation is a critical issue for society as well as its tourist. This study develops an optimal route search system using A * algorithm. A * algorithm using nearest distance estimates to achieve goals and have a heuristic value that is used as a basis for consideration. The resulting software is capable of finding the optimal transportation solution in the Palembang area so that people can get information easily and the accuracy of the application by 91.8%

    The GRT Planning System: Backward Heuristic Construction in Forward State-Space Planning

    Full text link
    This paper presents GRT, a domain-independent heuristic planning system for STRIPS worlds. GRT solves problems in two phases. In the pre-processing phase, it estimates the distance between each fact and the goals of the problem, in a backward direction. Then, in the search phase, these estimates are used in order to further estimate the distance between each intermediate state and the goals, guiding so the search process in a forward direction and on a best-first basis. The paper presents the benefits from the adoption of opposite directions between the preprocessing and the search phases, discusses some difficulties that arise in the pre-processing phase and introduces techniques to cope with them. Moreover, it presents several methods of improving the efficiency of the heuristic, by enriching the representation and by reducing the size of the problem. Finally, a method of overcoming local optimal states, based on domain axioms, is proposed. According to it, difficult problems are decomposed into easier sub-problems that have to be solved sequentially. The performance results from various domains, including those of the recent planning competitions, show that GRT is among the fastest planners

    Bidirectional Heuristic Search Reconsidered

    Full text link
    The assessment of bidirectional heuristic search has been incorrect since it was first published more than a quarter of a century ago. For quite a long time, this search strategy did not achieve the expected results, and there was a major misunderstanding about the reasons behind it. Although there is still wide-spread belief that bidirectional heuristic search is afflicted by the problem of search frontiers passing each other, we demonstrate that this conjecture is wrong. Based on this finding, we present both a new generic approach to bidirectional heuristic search and a new approach to dynamically improving heuristic values that is feasible in bidirectional search only. These approaches are put into perspective with both the traditional and more recently proposed approaches in order to facilitate a better overall understanding. Empirical results of experiments with our new approaches show that bidirectional heuristic search can be performed very efficiently and also with limited memory. These results suggest that bidirectional heuristic search appears to be better for solving certain difficult problems than corresponding unidirectional search. This provides some evidence for the usefulness of a search strategy that was long neglected. In summary, we show that bidirectional heuristic search is viable and consequently propose that it be reconsidered.Comment: See http://www.jair.org/ for any accompanying file

    Planning Graph Heuristics for Belief Space Search

    Full text link
    Some recent works in conditional planning have proposed reachability heuristics to improve planner scalability, but many lack a formal description of the properties of their distance estimates. To place previous work in context and extend work on heuristics for conditional planning, we provide a formal basis for distance estimates between belief states. We give a definition for the distance between belief states that relies on aggregating underlying state distance measures. We give several techniques to aggregate state distances and their associated properties. Many existing heuristics exhibit a subset of the properties, but in order to provide a standardized comparison we present several generalizations of planning graph heuristics that are used in a single planner. We compliment our belief state distance estimate framework by also investigating efficient planning graph data structures that incorporate BDDs to compute the most effective heuristics. We developed two planners to serve as test-beds for our investigation. The first, CAltAlt, is a conformant regression planner that uses A* search. The second, POND, is a conditional progression planner that uses AO* search. We show the relative effectiveness of our heuristic techniques within these planners. We also compare the performance of these planners with several state of the art approaches in conditional planning
    • …
    corecore