16 research outputs found

    Neural BRDF Representation and Importance Sampling

    Get PDF
    Controlled capture of real-world material appearance yields tabulated sets of highly realistic reflectance data. In practice, however, its high memory footprint requires compressing into a representation that can be used efficiently in rendering while remaining faithful to the original. Previous works in appearance encoding often prioritized one of these requirements at the expense of the other, by either applying high-fidelity array compression strategies not suited for efficient queries during rendering, or by fitting a compact analytic model that lacks expressiveness. We present a compact neural network-based representation of BRDF data that combines high-accuracy reconstruction with efficient practical rendering via built-in interpolation of reflectance. We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling, critical for the accurate reconstruction of specular highlights. Additionally, we propose a novel approach to make our representation amenable to importance sampling: rather than inverting the trained networks, we learn to encode them in a more compact embedding that can be mapped to parameters of an analytic BRDF for which importance sampling is known. We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets, and importance sampling performance for isotropic BRDFs mapped to two different analytic models

    Intuitive and Accurate Material Appearance Design and Editing

    Get PDF
    Creating and editing high-quality materials for photorealistic rendering can be a difficult task due to the diversity and complexity of material appearance. Material design is the process by which artists specify the reflectance properties of a surface, such as its diffuse color and specular roughness. Even with the support of commercial software packages, material design can be a time-consuming trial-and-error task due to the counter-intuitive nature of the complex reflectance models. Moreover, many material design tasks require the physical realization of virtually designed materials as the final step, which makes the process even more challenging due to rendering artifacts and the limitations of fabrication. In this dissertation, we propose a series of studies and novel techniques to improve the intuitiveness and accuracy of material design and editing. Our goal is to understand how humans visually perceive materials, simplify user interaction in the design process and, and improve the accuracy of the physical fabrication of designs. Our first work focuses on understanding the perceptual dimensions for measured material data. We build a perceptual space based on a low-dimensional reflectance manifold that is computed from crowd-sourced data using a multi-dimensional scaling model. Our analysis shows the proposed perceptual space is consistent with the physical interpretation of the measured data. We also put forward a new material editing interface that takes advantage of the proposed perceptual space. We visualize each dimension of the manifold to help users understand how it changes the material appearance. Our second work investigates the relationship between translucency and glossiness in material perception. We conduct two human subject studies to test if subsurface scattering impacts gloss perception and examine how the shape of an object influences this perception. Based on our results, we discuss why it is necessary to include transparent and translucent media for future research in gloss perception and material design. Our third work addresses user interaction in the material design system. We present a novel Augmented Reality (AR) material design prototype, which allows users to visualize their designs against a real environment and lighting. We believe introducing AR technology can make the design process more intuitive and improve the authenticity of the results for both novice and experienced users. To test this assumption, we conduct a user study to compare our prototype with the traditional material design system with gray-scale background and synthetic lighting. The results demonstrate that with the help of AR techniques, users perform better in terms of objectively measured accuracy and time and they are subjectively more satisfied with their results. Finally, our last work turns to the challenge presented by the physical realization of designed materials. We propose a learning-based solution to map the virtually designed appearance to a meso-scale geometry that can be easily fabricated. Essentially, this is a fitting problem, but compared with previous solutions, our method can provide the fabrication recipe with higher reconstruction accuracy for a large fitting gamut. We demonstrate the efficacy of our solution by comparing the reconstructions with existing solutions and comparing fabrication results with the original design. We also provide an application of bi-scale material editing using the proposed method

    An Overview of BRDF Models

    Get PDF
    This paper is focused on the Bidirectional Reflectance Distribution Function (BRDF) in the context of algorithms for computational production of realistic synthetic images. We provide a review of most relevant analytical BRDF models proposed in the literature which have been used for realistic rendering. We also show different approaches used for obtaining efficient models from acquired reflectance data, and the related function fitting techniques, suitable for using that data in efficient rendering algorithms. We consider algorithms for computation of BRDF integrals, by using Monte-Carlo based numerical integration. In this context, we review known techniques to design efficient BRDF sampling schemes for both analytical and measured BRDF models.The authors have been partially supported by the Spanish Research Program under project TIN2004-07672-C03-02 and the Andalusian Research Program under project P08-TIC-03717

    A Low-Dimensional Perceptual Space for Intuitive BRDF Editing

    Get PDF
    International audienceUnderstanding and characterizing material appearance based on human perception is challenging because of the highdimensionality and nonlinearity of reflectance data. We refer to the process of identifying specific characteristics of material appearance within the same category as material estimation, in contrast to material categorization which focuses on identifying inter-category differences [FNG15]. In this paper, we present a method to simulate the material estimation process based on human perception. We create a continuous perceptual space for measured tabulated data based on its underlying low-dimensional manifold. Unlike many previous works that only address individual perceptual attributes (such as gloss), we focus on extracting all possible dimensions that can explain the perceived differences between appearances. Additionally, we propose a new material editing interface that combines image navigation and sliders to visualize each perceptual dimension and facilitate the editing of tabulated BRDFs. We conduct a user study to evaluate the efficacy of the perceptual space and the interface in terms of appearance matching

    Image based surface reflectance remapping for consistent and tool independent material appearence

    Get PDF
    Physically-based rendering in Computer Graphics requires the knowledge of material properties other than 3D shapes, textures and colors, in order to solve the rendering equation. A number of material models have been developed, since no model is currently able to reproduce the full range of available materials. Although only few material models have been widely adopted in current rendering systems, the lack of standardisation causes several issues in the 3D modelling workflow, leading to a heavy tool dependency of material appearance. In industry, final decisions about products are often based on a virtual prototype, a crucial step for the production pipeline, usually developed by a collaborations among several departments, which exchange data. Unfortunately, exchanged data often tends to differ from the original, when imported into a different application. As a result, delivering consistent visual results requires time, labour and computational cost. This thesis begins with an examination of the current state of the art in material appearance representation and capture, in order to identify a suitable strategy to tackle material appearance consistency. Automatic solutions to this problem are suggested in this work, accounting for the constraints of real-world scenarios, where the only available information is a reference rendering and the renderer used to obtain it, with no access to the implementation of the shaders. In particular, two image-based frameworks are proposed, working under these constraints. The first one, validated by means of perceptual studies, is aimed to the remapping of BRDF parameters and useful when the parameters used for the reference rendering are available. The second one provides consistent material appearance across different renderers, even when the parameters used for the reference are unknown. It allows the selection of an arbitrary reference rendering tool, and manipulates the output of other renderers in order to be consistent with the reference

    Phenomenological modeling of image irradiance for non-Lambertian surfaces under natural illumination.

    Get PDF
    Various vision tasks are usually confronted by appearance variations due to changes of illumination. For instance, in a recognition system, it has been shown that the variability in human face appearance is owed to changes to lighting conditions rather than person\u27s identity. Theoretically, due to the arbitrariness of the lighting function, the space of all possible images of a fixed-pose object under all possible illumination conditions is infinite dimensional. Nonetheless, it has been proven that the set of images of a convex Lambertian surface under distant illumination lies near a low dimensional linear subspace. This result was also extended to include non-Lambertian objects with non-convex geometry. As such, vision applications, concerned with the recovery of illumination, reflectance or surface geometry from images, would benefit from a low-dimensional generative model which captures appearance variations w.r.t. illumination conditions and surface reflectance properties. This enables the formulation of such inverse problems as parameter estimation. Typically, subspace construction boils to performing a dimensionality reduction scheme, e.g. Principal Component Analysis (PCA), on a large set of (real/synthesized) images of object(s) of interest with fixed pose but different illumination conditions. However, this approach has two major problems. First, the acquired/rendered image ensemble should be statistically significant vis-a-vis capturing the full behavior of the sources of variations that is of interest, in particular illumination and reflectance. Second, the curse of dimensionality hinders numerical methods such as Singular Value Decomposition (SVD) which becomes intractable especially with large number of large-sized realizations in the image ensemble. One way to bypass the need of large image ensemble is to construct appearance subspaces using phenomenological models which capture appearance variations through mathematical abstraction of the reflection process. In particular, the harmonic expansion of the image irradiance equation can be used to derive an analytic subspace to represent images under fixed pose but different illumination conditions where the image irradiance equation has been formulated in a convolution framework. Due to their low-frequency nature, irradiance signals can be represented using low-order basis functions, where Spherical Harmonics (SH) has been extensively adopted. Typically, an ideal solution to the image irradiance (appearance) modeling problem should be able to incorporate complex illumination, cast shadows as well as realistic surface reflectance properties, while moving away from the simplifying assumptions of Lambertian reflectance and single-source distant illumination. By handling arbitrary complex illumination and non-Lambertian reflectance, the appearance model proposed in this dissertation moves the state of the art closer to the ideal solution. This work primarily addresses the geometrical compliance of the hemispherical basis for representing surface reflectance while presenting a compact, yet accurate representation for arbitrary materials. To maintain the plausibility of the resulting appearance, the proposed basis is constructed in a manner that satisfies the Helmholtz reciprocity property while avoiding high computational complexity. It is believed that having the illumination and surface reflectance represented in the spherical and hemispherical domains respectively, while complying with the physical properties of the surface reflectance would provide better approximation accuracy of image irradiance when compared to the representation in the spherical domain. Discounting subsurface scattering and surface emittance, this work proposes a surface reflectance basis, based on hemispherical harmonics (HSH), defined on the Cartesian product of the incoming and outgoing local hemispheres (i.e. w.r.t. surface points). This basis obeys physical properties of surface reflectance involving reciprocity and energy conservation. The basis functions are validated using analytical reflectance models as well as scattered reflectance measurements which might violate the Helmholtz reciprocity property (this can be filtered out through the process of projecting them on the subspace spanned by the proposed basis, where the reciprocity property is preserved in the least-squares sense). The image formation process of isotropic surfaces under arbitrary distant illumination is also formulated in the frequency space where the orthogonality relation between illumination and reflectance bases is encoded in what is termed as irradiance harmonics. Such harmonics decouple the effect of illumination and reflectance from the underlying pose and geometry. Further, a bilinear approach to analytically construct irradiance subspace is proposed in order to tackle the inherent problem of small-sample-size and curse of dimensionality. The process of finding the analytic subspace is posed as establishing a relation between its principal components and that of the irradiance harmonics basis functions. It is also shown how to incorporate prior information about natural illumination and real-world surface reflectance characteristics in order to capture the full behavior of complex illumination and non-Lambertian reflectance. The use of the presented theoretical framework to develop practical algorithms for shape recovery is further presented where the hitherto assumed Lambertian assumption is relaxed. With a single image of unknown general illumination, the underlying geometrical structure can be recovered while accounting explicitly for object reflectance characteristics (e.g. human skin types for facial images and teeth reflectance for human jaw reconstruction) as well as complex illumination conditions. Experiments on synthetic and real images illustrate the robustness of the proposed appearance model vis-a-vis illumination variation. Keywords: computer vision, computer graphics, shading, illumination modeling, reflectance representation, image irradiance, frequency space representations, {hemi)spherical harmonics, analytic bilinear PCA, model-based bilinear PCA, 3D shape reconstruction, statistical shape from shading

    Acquisition and modeling of material appearance

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 131-143).In computer graphics, the realistic rendering of synthetic scenes requires a precise description of surface geometry, lighting, and material appearance. While 3D geometry scanning and modeling have advanced significantly in recent years, measurement and modeling of accurate material appearance have remained critical challenges. Analytical models are the main tools to describe material appearance in most current applications. They provide compact and smooth approximations to real materials but lack the expressiveness to represent complex materials. Data-driven approaches based on exhaustive measurements are fully general but the measurement process is difficult and the storage requirement is very high. In this thesis, we propose the use of hybrid representations that are more compact and easier to acquire than exhaustive measurement, while preserving much generality of a data-driven approach. To represent complex bidirectional reflectance distribution functions (BRDFs), we present a new method to estimate a general microfacet distribution from measured data. We show that this representation is able to reproduce complex materials that are impossible to model with purely analytical models.(cont.) We also propose a new method that significantly reduces measurement cost and time of the bidirectional texture function (BTF) through a statistical characterization of texture appearance. Our reconstruction method combines naturally aligned images and alignment-insensitive statistics to produce visually plausible results. We demonstrate our acquisition system which is able to capture intricate materials like fabrics in less than ten minutes with commodity equipments. In addition, we present a method to facilitate effective user design in the space of material appearance. We introduce a metric in the space of reflectance which corresponds roughly to perceptual measures. The main idea of our approach is to evaluate reflectance differences in terms of their induced rendered images, instead of the reflectance function itself defined in the angular domains. With rendered images, we show that even a simple computational metric can provide good perceptual spacing and enable intuitive navigation of the reflectance space.by Wai Kit Addy Ngan.Ph.D

    Practical photon mapping in hardware

    Get PDF
    Photon mapping is a popular global illumination algorithm that can reproduce a wide range of visual effects including indirect illumination, color bleeding and caustics on complex diffuse, glossy, and specular surfaces modeled using arbitrary geometric primitives. However, the large amount of computation and tremendous amount of memory bandwidth, terabytes per second, required makes photon mapping prohibitively expensive for interactive applications. In this dissertation I present three techniques that work together to reduce the bandwidth requirements of photon mapping by over an order of magnitude. These are combined in a hardware architecture that can provide interactive performance on moderately-sized indirectly-illuminated scenes using a pre-computed photon map. 1. The computations of the naive photon map algorithm are efficiently reordered, generating exactly the same image, but with an order of magnitude less bandwidth due to an easily cacheable sequence of memory accesses. 2. The irradiance caching algorithm is modified to allow fine-grain parallel execution by removing the sequential dependency between pixels. The bandwidth requirements of scenes with diffuse surfaces and low geometric complexity is reduced by an additional 40% or more. 3. Generating final gather rays in proportion to both the incident radiance and the reflectance functions requires fewer final gather rays for images of the same quality. Combined Importance Sampling is simple to implement, cheap to compute, compatible with query reordering, and can reduce bandwidth requirements by an order of magnitude. Functional simulation of a practical and scalable hardware architecture based on these three techniques shows that an implementation that would fit within a host workstation will achieve interactive rates. This architecture is therefore a candidate for the next generation of graphics hardware

    Path manipulation strategies for rendering dynamic environments.

    Get PDF
    The current work introduces path manipulation as a tool that extends bidirectional path tracing to reuse paths in the temporal domain. Defined as an apparatus of sampling and reuse strategies, path manipulation reconstructs the subpaths that compose the light transport paths and addresses the restriction of static geometry commonly associated with Monte Carlo light transport simulations. By reconstructing and reusing subpaths, the path manipulation algorithm obviates the regeneration of the entire path collection, reduces the computational load of the original algorithm and supports scene dynamism. Bidirectional path tracing relies on local path sampling techniques to generate the paths of light in a synthetic environment. By using the information localized at path vertices, like the probability distribution, the sampling techniques construct paths progressively with distinct probability densities. Each probability density corresponds to a particular sampling technique, which accounts for specific illumination effects. Bidirectional path tracing uses multiple importance sampling to combine paths sampled with different techniques in low-variance estimators. The path sampling techniques and multiple importance sampling are the keys to the efficacy of bidirectional path tracing. However, the sampling techniques gained little attention beyond the generation and evaluation of paths. Bidirectional path tracing was designed for static scenes and thus it discards the generated paths immediately after the evaluation of their contributions. Limiting the lifespan of paths to a generation-evaluation cycle imposes a static use of paths and of sampling techniques. The path manipulation algorithm harnesses the potential of the sampling techniques to supplant the static manipulation of paths with a generation-evaluation-reuse cycle. An intra-subpath connectivity strategy was devised to reconnect the segregated chains of the subpaths invalidated by the scene alterations. Successful intra-subpath connections generate subpaths in multiple pieces by reusing subpath chains from prior frames. Subpaths are reconstructed generically, regardless of the subpath or scene dynamism type and without the need for predefined animation paths. The result is the extension of bidirectional path tracing to the temporal domain
    corecore