33,212 research outputs found

    Ethical Myopia: The Case of Framing by Framing

    Get PDF

    Cumulative dominance and heuristic performance in binary multi-attribute choice

    Get PDF
    Working paper 895, Department of Economics and Business, Universitat Pompeu FabraSeveral studies have reported high performance of simple decision heuristics in multi-attribute decision making. In this paper, we focus on situations where attributes are binary and analyze the performance of Deterministic-Elimination-By-Aspects (DEBA) and similar decision heuristics. We consider non-increasing weights and two probabilistic models for the attribute values: one where attribute values are independent Bernoulli randomvariables; the other one where they are binary random variables with inter-attribute positive correlations. Using these models, we show that good performance of DEBA is explained by the presence of cumulative as opposed to simple dominance. We therefore introduce the concepts of cumulative dominance compliance and fully cumulative dominance compliance and show that DEBA satisfies those properties. We derive a lower bound with which cumulative dominance compliant heuristics will choose a best alternative and show that, even with many attributes, this is not small. We also derive an upper bound for the expected loss of fully cumulative compliance heuristics and show that this is moderate even when the number of attributes is large. Both bounds are independent of the values of the weights.Postprint (author’s final draft

    Building machines that learn and think about morality

    Get PDF
    Lake et al. propose three criteria which, they argue, will bring artificial intelligence (AI) systems closer to human cognitive abilities. In this paper, we explore the application of these criteria to a particular domain of human cognition: our capacity for moral reasoning. In doing so, we explore a set of considerations relevant to the development of AI moral decision-making. Our main focus is on the relation between dual-process accounts of moral reasoning and model-free/model-based forms of machine learning. We also discuss how work in embodied and situated cognition could provide a valu- able perspective on future research

    Heuristic Voting as Ordinal Dominance Strategies

    Full text link
    Decision making under uncertainty is a key component of many AI settings, and in particular of voting scenarios where strategic agents are trying to reach a joint decision. The common approach to handle uncertainty is by maximizing expected utility, which requires a cardinal utility function as well as detailed probabilistic information. However, often such probabilities are not easy to estimate or apply. To this end, we present a framework that allows "shades of gray" of likelihood without probabilities. Specifically, we create a hierarchy of sets of world states based on a prospective poll, with inner sets contain more likely outcomes. This hierarchy of likelihoods allows us to define what we term ordinally-dominated strategies. We use this approach to justify various known voting heuristics as bounded-rational strategies.Comment: This is the full version of paper #6080 accepted to AAAI'1

    Producing Scheduling that Causes Concurrent Programs to Fail

    Get PDF
    A noise maker is a tool that seeds a concurrent program with conditional synchronization primitives (such as yield()) for the purpose of increasing the likelihood that a bug manifest itself. This work explores the theory and practice of choosing where in the program to induce such thread switches at runtime. We introduce a novel fault model that classifies locations as .good., .neutral., or .bad,. based on the effect of a thread switch at the location. Using the model we explore the terms in which efficient search for real-life concurrent bugs can be carried out. We accordingly justify the use of probabilistic algorithms for this search and gain a deeper insight of the work done so far on noise-making. We validate our approach by experimenting with a set of programs taken from publicly available multi-threaded benchmark. Our empirical evidence demonstrates that real-life behavior is similar to what our model predicts

    Proof by analogy in mural

    Get PDF
    One of the most important advantages of using a formal method of developing software is that one can prove that development steps are correct with respect to their specification. Conducting proofs by hand, however,can be time consuming to the extent that designers have to judge whether a proof of a particular obligation is worth conducting. Even if hand proofs are worth conducting, how do we know that they are correct? One approach to overcoming this problem is to use an automatic theorem proving system to develop and check our proofs. However, in order to enable present day theorem provers to check proofs, one has to conduct them in much more detail than hand proofs. Carrying out more detailed proofs is of course more time consuming. This paper describes the use of proof by analogy in an attempt to reduce the time spent on proofs. We develop and implement a proof follower based on analogy and present two examples to illustrate its characteristics. One example illustrates the successful use of the proof follower. The other example illustrates that the follower's failure can provide a hint that enables the user to complete a proof

    Towards a Quantum-Like Cognitive Architecture for Decision-Making

    Full text link
    We propose an alternative and unifying framework for decision-making that, by using quantum mechanics, provides more generalised cognitive and decision models with the ability to represent more information than classical models. This framework can accommodate and predict several cognitive biases reported in Lieder & Griffiths without heavy reliance on heuristics nor on assumptions of the computational resources of the mind
    • …
    corecore