231,315 research outputs found

    Design and Analysis of an Optimized Scheduling Approach using Decision Making over IoT (TOPSI) for Relay based Routing Protocols

    Get PDF
    This research work focuses on support towards QoS approaches over IoT using computational models based on scheduling schemes to enable service oriented systems. IoT system supports on application of day-to-day physical tasks with virtual objects which inter-connect to create opportunities for integration of world into computer-based systems. The QoS scheduling model TOPSI implements a top-down decision making process over top to bottom interconnected layers using service supportive optimization algorithms based on demandable QoS requirements and applications. TOPSI adopts Markov Decision Process (MDP) at the three layers from transport layer to application layer which identifies the QoS supportive metrics for IoT and maximizes the service quality at network layer. The connection cost over multiple sessions is stochastic in nature as service is supportive based on decision making algorithms. TOPSI uses QoS attributes adopted in traditional QoS mechanisms based on transmission of sensor data and decision making based on sensing ability. TOPSI model defines and measures the QoS metrics of IoT network using adaptive monitoring module at transport layer for the defined service in use. TOPSI shows optimized throughput for variable load in use, sessions and observed delay. TOPSI works on route identification, route binding, update and deletion process based on the validation of adaptive QoS metrics, before the optimal route selection process between source and destination. This research work discusses on the survey and analyzes the performance of TOPSI and RBL schemes. The simulation test beds and scenario mapping are carried out using Cooja network simulator

    Clustering heterogeneous categorical data using enhanced mini batch K-means with entropy distance measure

    Get PDF
    Clustering methods in data mining aim to group a set of patterns based on their similarity. In a data survey, heterogeneous information is established with various types of data scales like nominal, ordinal, binary, and Likert scales. A lack of treatment of heterogeneous data and information leads to loss of information and scanty decision-making. Although many similarity measures have been established, solutions for heterogeneous data in clustering are still lacking. The recent entropy distance measure seems to provide good results for the heterogeneous categorical data. However, it requires many experiments and evaluations. This article presents a proposed framework for heterogeneous categorical data solution using a mini batch k-means with entropy measure (MBKEM) which is to investigate the effectiveness of similarity measure in clustering method using heterogeneous categorical data. Secondary data from a public survey was used. The findings demonstrate the proposed framework has improved the clustering’s quality. MBKEM outperformed other clustering algorithms with the accuracy at 0.88, v-measure (VM) at 0.82, adjusted rand index (ARI) at 0.87, and Fowlkes-Mallow’s index (FMI) at 0.94. It is observed that the average minimum elapsed time-varying for cluster generation, k at 0.26 s. In the future, the proposed solution would be beneficial for improving the quality of clustering for heterogeneous categorical data problems in many domains

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    A survey of cost-sensitive decision tree induction algorithms

    Get PDF
    The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field

    Information-theoretic Reasoning in Distributed and Autonomous Systems

    Get PDF
    The increasing prevalence of distributed and autonomous systems is transforming decision making in industries as diverse as agriculture, environmental monitoring, and healthcare. Despite significant efforts, challenges remain in robustly planning under uncertainty. In this thesis, we present a number of information-theoretic decision rules for improving the analysis and control of complex adaptive systems. We begin with the problem of quantifying the data storage (memory) and transfer (communication) within information processing systems. We develop an information-theoretic framework to study nonlinear interactions within cooperative and adversarial scenarios, solely from observations of each agent's dynamics. This framework is applied to simulations of robotic soccer games, where the measures reveal insights into team performance, including correlations of the information dynamics to the scoreline. We then study the communication between processes with latent nonlinear dynamics that are observed only through a filter. By using methods from differential topology, we show that the information-theoretic measures commonly used to infer communication in observed systems can also be used in certain partially observed systems. For robotic environmental monitoring, the quality of data depends on the placement of sensors. These locations can be improved by either better estimating the quality of future viewpoints or by a team of robots operating concurrently. By robustly handling the uncertainty of sensor model measurements, we are able to present the first end-to-end robotic system for autonomously tracking small dynamic animals, with a performance comparable to human trackers. We then solve the issue of coordinating multi-robot systems through distributed optimisation techniques. These allow us to develop non-myopic robot trajectories for these tasks and, importantly, show that these algorithms provide guarantees for convergence rates to the optimal payoff sequence
    corecore