59 research outputs found

    Fault-tolerant Resource Reasoning.

    Get PDF
    Abstract. Separation logic has been successful at verifying that programs do not crash due to illegal use of resources. The underlying assumption, however, is that machines do not fail. In practice, machines can fail unpredictably for various reasons, e.g. power loss, corrupting resources. Critical software, e.g. file systems, employ recovery methods to mitigate these effects. We introduce an extension of the Views framework to reason about such methods. We use concurrent separation logic as an instance of the framework to illustrate our reasoning, and explore programs using write-ahead logging, e.g. an ARIES recovery algorithm

    Binary-Compatible Verification of Filesystems with ACL2

    Get PDF
    Filesystems are an essential component of most computer systems. Work on the verification of filesystem functionality has been focused on constructing new filesystems in a manner which simplifies the process of verifying them against specifications. This leaves open the question of whether filesystems already in use are correct at the binary level. This paper introduces LoFAT, a model of the FAT32 filesystem which efficiently implements a subset of the POSIX filesystem operations, and HiFAT, a more abstract model of FAT32 which is simpler to reason about. LoFAT is proved to be correct in terms of refinement of HiFAT, and made executable by enabling the state of the model to be written to and read from FAT32 disk images. EqFAT, an equivalence relation for disk images, considers whether two disk images contain the same directory tree modulo reordering of files and implementation-level details regarding cluster allocation. A suite of co-simulation tests uses EqFAT to compare the operation of existing FAT32 implementations to LoFAT and check the correctness of existing implementations of FAT32 such as the mtools suite of programs and the Linux FAT32 implementation. All models and proofs are formalized and mechanically verified in ACL2

    Co-Design and Verification of an Available File System

    Get PDF
    International audienceDistributed file systems play a vital role in large-scale enterprise services. However, the designer of a distributed file system faces a vexing choice between strong consistency and asynchronous replica-tion. The former supports a standard sequential model by synchronising operations, but is slow and fragile. The latter is highly available and responsive, but exposes users to concurrency anomalies. In this paper, we describe a rigorous and general approach to navigating this trade-off by leveraging static verification tools that allow to verify different file system designs. We show that common file system operations can run concurrently without synchronisation, while still retaining a semantics reasonably similar to Posix hierarchical structure. The one exception is the move operation, for which we prove that, unless synchronised, it will have an anomalous behaviour
    corecore