9,036 research outputs found

    A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data

    Get PDF
    Traffic safety is an important part of the roadway in sustainable development. Freeway traffic crashes typically cause serious casualties and property losses, being a serious threat to public safety. Figuring out the potential correlation between various risk factors and revealing their coupling mechanisms are of effective ways to explore and identity freeway crash causes. However, the existing association rule mining algorithms still have some limitations in both efficiency and accuracy. Based on this consideration, using the freeway traffic crash data obtained from WDOT (Washington Department of Transportation), this research constructed a multi-dimensional multilevel system for traffic crash analysis. Considering the load balancing, the FP-Growth (Frequent Pattern- Growth) algorithm was optimized parallelly based on Hadoop platform, to achieve an efficient and accurate association rule mining calculation for massive amounts of traffic crash data; then, according to the results of the coupling mechanism among the crash precursors, the causes of freeway traffic crashes were identified and revealed. The results show that the parallel FPgrowth algorithm with load balancing constraints has a better operating speed than both the conventional FP-growth algorithm and parallel FP-growth algorithm towards processing big data. This improved algorithm makes full use of Hadoop cluster resources and is more suitable for large traffic crash data sets mining while retaining the original advantages of conventional association rule mining algorithm. In addition, the mining association rules model with the improvement of multi-dimensional interaction proposed in this research can catch the occurrence mechanism of freeway traffic crash with serious consequences (lower support degree probably) accurately and efficiently

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Developing App from User Feedback using Deep Learning

    Get PDF

    Application of big data in transportation safety analysis using statistical and deep learning methods

    Get PDF
    The emergence of new sensors and data sources provides large scale high-resolution big data from instantaneous vehicular movements, driver decision and states, surrounding environment, roadway characteristics, weather condition, etc. Such a big data can be served to expand our understanding regarding the current state of the transportation and help us to proactively evaluate and monitor the system performance. The key idea behind this dissertation is to identify the moments and locations where drivers are exhibiting different behavior comparing to the normal behavior. The concept of driving volatility is utilized which quantifies deviation from normal driving in terms of variations in speed, acceleration/deceleration, and vehicular jerk. This idea is utilized to explore the association of volatility in different hierarchies of transportation system, i.e.: 1) Instance level; 2) Event level; 3) Driver level; 4) Intersection level; and 5) Network level. In summary, the main contribution of this dissertation is exploring the association of variations in driving behavior in terms of driving volatility at different levels by harnessing big data generated from emerging data sources under real-world condition, which is applicable to the intelligent transportation systems and smart cities. By analyzing real-world crashes/near-crashes and predicting occurrence of extreme event, proactive warnings and feedback can be generated to warn drivers and adjacent vehicles regarding potential hazard. Furthermore, the results of this study help agencies to proactively monitor and evaluate safety performance of the network and identify locations where crashes are waiting to happen. The main objective of this dissertation is to integrate big data generated from emerging sources into safety analysis by considering different levels in the system. To this end, several data sources including Connected Vehicles data (with more than 2.2 billion seconds of observations), naturalistic driving data (with more than 2 million seconds of observations from vehicular kinematics and driver behavior), conventional data on roadway factors and crash data are integrated

    Short-term crash risk prediction considering proactive, reactive, and driver behavior factors

    Get PDF
    Providing a safe and efficient transportation system is the primary goal of transportation engineering and planning. Highway crashes are among the most significant challenges to achieving this goal. They result in significant societal toll reflected in numerous fatalities, personal injuries, property damage, and traffic congestion. To that end, much attention has been given to predictive models of crash occurrence and severity. Most of these models are reactive: they use the data about crashes that have occurred in the past to identify the significant crash factors, crash hot-spots and crash-prone roadway locations, analyze and select the most effective countermeasures for reducing the number and severity of crashes. More recently, the advancements have been made in developing proactive crash risk models to assess short-term crash risks in near-real time. Such models could be applied as part of traffic management strategies to prevent and mitigate the crashes. The driver behavior is found to be the leading cause of highway crashes. Nevertheless, due to data unavailability, limited studies have explored and quantified the role of driver behavior in crashes. The Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) offers an unprecedented opportunity to perform an in-depth analysis of the impacts of driver behavior on crashes events. The research presented in this dissertation is divided into three parts, corresponding to the research objectives. The first part investigates the application of advanced data modeling methods for proactive crash risk analysis. Several proactive models for segment level crash risk and severity assessment are developed and tested, considering the proactive data available to most transportation agencies in real time at a regional network scale. The data include roadway geometry characteristics, traffic flow characteristics, and weather condition data. The analysis methods include Random-effect Bayesian Logistics Regression, Random Forest, Gradient Boosting Machine, K-Nearest Neighbor, Gaussian Naive Bayes (GNB), and Multi-layer Feedforward Deep Neural Network (MLFDNN). The random oversampling technique is applied to deal with the problem of data imbalance associated with the injury severity analysis. The model training and testing are completed using a dataset containing records of 10,155 crashes that occurred on two interstate highways in New Jersey over a period of two years. The second part of the study analyzes the potential improvement in the prediction abilities of the proposed models by adding reactive data (such as vehicle characteristics and driver characteristics) to the analysis. Commonly, the reactive data is only available (known) after the crash occurs. In the proposed research, the crash analysis is performed by classifying crashes in multiple groupings (instead of a single group), constructed based on the age of drivers and vehicles to account for the impact of reactive data on driver injury severity outcomes. The results of the second part of the study show that while the simultaneous use of reactive and proactive data can improve the prediction performance of the models, the absolute crash probability values must be further improved for operational crash risk prediction. To this end, in the third part of the study, the Naturalistic Driving Study data is used to calibrate the crash risk models, including the driver behavior risk factors. The findings show significant improvement in crash prediction accuracy with the inclusion of driver behavior risk factors, which confirms the driver behavior to be the most critical risk factor affecting the crash likelihood and the associated injury severity

    Real-time crash prediction models: State-of-the-art, design pathways and ubiquitous requirements

    Get PDF
    Proactive traffic safety management systems can monitor traffic conditions in real-time, identify the formation of unsafe traffic dynamics, and implement suitable interventions to bring unsafe conditions back to normal traffic situations. Recent advancements in artificial intelligence, sensor fusion and algorithms have brought about the introduction of a proactive safety management system closer to reality. The basic prerequisite for developing such a system is to have a reliable crash prediction model that takes real-time traffic data as input and evaluates their association with crash risk. Since the early 21st century, several studies have focused on developing such models. Although the idea has considerably matured over time, the endeavours have been quite discrete and fragmented at best because the fundamental aspects of the overall modelling approach substantially vary. Therefore, a number of transitional challenges have to be identified and subsequently addressed before a ubiquitous proactive safety management system can be formulated, designed and implemented in real-world scenarios. This manuscript conducts a comprehensive review of existing real-time crash prediction models with the aim of illustrating the state-of-the-art and systematically synthesizing the thoughts presented in existing studies in order to facilitate its translation from an idea into a ready to use technology. Towards that journey, it conducts a systematic review by applying various text mining methods and topic modelling. Based on the findings, this paper ascertains the development pathways followed in various studies, formulates the ubiquitous design requirements of such models from existing studies and knowledge of similar systems. Finally, this study evaluates the universality and design compatibility of existing models. This paper is, therefore, expected to serve as a one stop knowledge source for facilitating a faster transition from the idea of real-time crash prediction models to a real-world operational proactive traffic safety management system

    Methodological evolution and frontiers of identifying, modeling and preventing secondary crashes on highways

    Get PDF
    © 2018 Elsevier Ltd Secondary crashes (SCs) or crashes that occur within the boundaries of the impact area of prior, primary crashes are one of the incident types that frequently affect highway traffic operations and safety. Existing studies have made great efforts to explore the underlying mechanisms of SCs and relevant methodologies have been e volving over the last two decades concerning the identification, modeling, and prevention of these crashes. So far there is a lack of a detailed examination on the progress, lessons, and potential opportunities regarding existing achievements in SC-related studies. This paper provides a comprehensive investigation of the state-of-the-art approaches; examines their strengths and weaknesses; and provides guidance in exploiting new directions in SC-related research. It aims to support researchers and practitioners in understanding well-established approaches so as to further explore the frontiers. Published studies focused on SCs since 1997 have been identified, reviewed, and summarized. Key issues concentrated on the following aspects are discussed: (i) static/dynamic approaches to identify SCs; (ii) parametric/non-parametric models to analyze SC risk, and (iii) deployable countermeasures to prevent SCs. Based on the examined issues, needs, and challenges, this paper further provides insights into potential opportunities such as: (a) fusing data from multiple sources for SC identification, (b) using advanced learning algorithms for real-time SC analysis, and (c) deploying connected vehicles for SC prevention in future research. This paper contributes to the research community by providing a one-stop reference for research on secondary crashes
    • …
    corecore