83 research outputs found

    State of the art of cyber-physical systems security: An automatic control perspective

    Get PDF
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds light on how security is actually addressed when dealing with cyber-physical systems from an automatic control perspective. The provided map of 138 selected studies is defined empirically and is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia

    Cyber attacks and faults discrimination in intelligent electronic device-based energy management systems

    Full text link
    Intelligent electronic devices (IEDs) along with advanced information and communication technology (ICT)-based networks are emerging in the legacy power grid to obtain real-time system states and provide the energy management system (EMS) with wide-area monitoring and advanced control capabilities. Cyber attackers can inject malicious data into the EMS to mislead the state estimation process and disrupt operations or initiate blackouts. A machine learning algorithm (MLA)-based approach is presented in this paper to detect false data injection attacks (FDIAs) in an IED-based EMS. In addition, stealthy construction of FDIAs and their impact on the detection rate of MLAs are analyzed. Furthermore, the impacts of natural disturbances such as faults on the system are considered, and the research work is extended to distinguish between cyber attacks and faults by using state-of-the-art MLAs. In this paper, state-of-the-art MLAs such as Random Forest, OneR, Naive Bayes, SVM, and AdaBoost are used as detection classifiers, and performance parameters such as detection rate, false positive rate, precision, recall, and f-measure are analyzed for different case scenarios on the IEEE benchmark 14-bus system. The experimental results are validated using real-time load flow data from the New York Independent System Operator (NYISO)

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Stealthy MTD against unsupervised learning-based blind FDI Attacks in power systems

    Get PDF
    This paper examines how moving target defenses (MTD) implemented in power systems can be countered by unsupervised learning-based false data injection (FDI) attack and how MTD can be combined with physical watermarking to enhance the system resilience. A novel intelligent attack, which incorporates dimensionality reduction and density-based spatial clustering, is developed and shown to be effective in maintaining stealth in the presence of traditional MTD strategies. In resisting this new type of attack, a novel implementation of MTD combining with physical watermarking is proposed by adding Gaussian watermark into physical plant parameters to drive detection of traditional and intelligent FDI attacks, while remaining hidden to the attackers and limiting the impact on system operation and stability
    • …
    corecore