10,691 research outputs found

    Bayesian nonparametric multivariate convex regression

    Full text link
    In many applications, such as economics, operations research and reinforcement learning, one often needs to estimate a multivariate regression function f subject to a convexity constraint. For example, in sequential decision processes the value of a state under optimal subsequent decisions may be known to be convex or concave. We propose a new Bayesian nonparametric multivariate approach based on characterizing the unknown regression function as the max of a random collection of unknown hyperplanes. This specification induces a prior with large support in a Kullback-Leibler sense on the space of convex functions, while also leading to strong posterior consistency. Although we assume that f is defined over R^p, we show that this model has a convergence rate of log(n)^{-1} n^{-1/(d+2)} under the empirical L2 norm when f actually maps a d dimensional linear subspace to R. We design an efficient reversible jump MCMC algorithm for posterior computation and demonstrate the methods through application to value function approximation

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification

    Distributed Kernel Regression: An Algorithm for Training Collaboratively

    Full text link
    This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 200

    Additive isotone regression

    Full text link
    This paper is about optimal estimation of the additive components of a nonparametric, additive isotone regression model. It is shown that asymptotically up to first order, each additive component can be estimated as well as it could be by a least squares estimator if the other components were known. The algorithm for the calculation of the estimator uses backfitting. Convergence of the algorithm is shown. Finite sample properties are also compared through simulation experiments.Comment: Published at http://dx.doi.org/10.1214/074921707000000355 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Data-Driven Estimation in Equilibrium Using Inverse Optimization

    Get PDF
    Equilibrium modeling is common in a variety of fields such as game theory and transportation science. The inputs for these models, however, are often difficult to estimate, while their outputs, i.e., the equilibria they are meant to describe, are often directly observable. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the parameters of these models from observed equilibria. We use this technique to estimate the utility functions of players in a game from their observed actions and to estimate the congestion function on a road network from traffic count data. A distinguishing feature of our approach is that it supports both parametric and \emph{nonparametric} estimation by leveraging ideas from statistical learning (kernel methods and regularization operators). In computational experiments involving Nash and Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate the unknown demand or congestion function, respectively, and b) our proposed regularization technique substantially improves the out-of-sample performance of our estimators.Comment: 36 pages, 5 figures Additional theorems for generalization guarantees and statistical analysis adde
    • …
    corecore