2,813 research outputs found

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Robots in Retirement Homes: Applying Off-the-Shelf Planning and Scheduling to a Team of Assistive Robots

    Get PDF
    This paper investigates three different technologies for solving a planning and scheduling problem of deploying multiple robots in a retirement home environment to assist elderly residents. The models proposed make use of standard techniques and solvers developed in AI planning and scheduling, with two primary motivations. First, to find a planning and scheduling solution that we can deploy in our real-world application. Second, to evaluate planning and scheduling technology in terms of the ``model-and-solve'' functionality that forms a major research goal in both domain-independent planning and constraint programming. Seven variations of our application are studied using the following three technologies: PDDL-based planning, time-line planning and scheduling, and constraint-based scheduling. The variations address specific aspects of the problem that we believe can impact the performance of the technologies while also representing reasonable abstractions of the real world application. We evaluate the capabilities of each technology and conclude that a constraint-based scheduling approach, specifically a decomposition using constraint programming, provides the most promising results for our application. PDDL-based planning is able to find mostly low quality solutions while the timeline approach was unable to model the full problem without alterations to the solver code, thus moving away from the model-and-solve paradigm. It would be misleading to conclude that constraint programming is ``better'' than PDDL-based planning in a general sense, both because we have examined a single application and because the approaches make different assumptions about the knowledge one is allowed to embed in a model. Nonetheless, we believe our investigation is valuable for AI planning and scheduling researchers as it highlights these different modelling assumptions and provides insight into avenues for the application of AI planning and scheduling for similar robotics problems. In particular, as constraint programming has not been widely applied to robot planning and scheduling in the literature, our results suggest significant untapped potential in doing so.California Institute of Technology. Keck Institute for Space Studie

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    A TGA-based Method for Safety Critical Plan Execution

    Get PDF
    Safety critical planning and execution is a crucial issue in autonomous systems. This paper proposes a methodology for controller synthesis suitable for timeline-based planning and demonstrates its effectiveness in a space domain where robustness of execution is a crucial property. The proposed approach uses Timed Game Automata (TGA) for formal modeling and the UPPAAL-TIGA model checker for controllers synthesis. An experimental evaluation is performed using a real-world control system

    Enriching APSI with Validation Capabilities: the KEEN environment and its use in Robotics

    Get PDF
    This paper presents the KnowledgE ENgineering (KEEN) design support system in which Validation and Verification (V&V) methods are used to strengthen onground development of software for plan-based autonomy. In particular, the paper describes a collection of verification methods, based on Timed Game Automata (TGA), deployed for the design and development of timeline-based Planning and Scheduling (P&S) applications within the APSI-TRF framework. The KEENs V&V functionalities are illustrated describing software development to synthesize plans for a planetary rover

    Satellite downlink scheduling problem: A case study

    Get PDF
    The synthetic aperture radar (SAR) technology enables satellites to efficiently acquire high quality images of the Earth surface. This generates significant communication traffic from the satellite to the ground stations, and, thus, image downlinking often becomes the bottleneck in the efficiency of the whole system. In this paper we address the downlink scheduling problem for Canada's Earth observing SAR satellite, RADARSAT-2. Being an applied problem, downlink scheduling is characterised with a number of constraints that make it difficult not only to optimise the schedule but even to produce a feasible solution. We propose a fast schedule generation procedure that abstracts the problem specific constraints and provides a simple interface to optimisation algorithms. By comparing empirically several standard meta-heuristics applied to the problem, we select the most suitable one and show that it is clearly superior to the approach currently in use.Comment: 23 page

    Efficiently Reasoning with Interval Constraints in Forward Search Planning

    Get PDF
    In this paper we present techniques for reasoning natively with quantitative/qualitative interval constraints in statebased PDDL planners. While these are considered important in modeling and solving problems in timeline based planners; reasoning with these in PDDL planners has seen relatively little attention, yet is a crucial step towards making PDDL planners applicable in real-world scenarios, such as space missions. Our main contribution is to extend the planner OPTIC to reason natively with Allen interval constraints. We show that our approach outperforms both MTP, the only PDDL planner capable of handling similar constraints and a compilation to PDDL 2.1, by an order of magnitude. We go on to present initial results indicating that our approach is competitive with a timeline based planner on a Mars rover domain, showing the potential of PDDL planners in this setting

    Integrated Charging Scheduling and Operational Control for an Electric Bus Network

    Full text link
    The last few years have seen the massive deployment of electric buses in many existing transit networks. However, the planning and operation of an electric bus system differ from that of a bus system with conventional vehicles, and some key problems have not yet been studied in the literature. In this work, we address the integrated operational control and charging scheduling problem for a network of electric buses with a limited opportunity charging capacity. We propose a hierarchical control framework to solve this problem, where the charging and operational decisions are taken jointly by solving a mixed-integer linear program in the high-level control layer. Since this optimization problem might become very large as more bus lines are considered, we propose to apply Lagrangian relaxation in such a way as to exploit the structure of the problem and enable a decomposition into independent subproblems. A local search heuristic is then deployed in order to generate good feasible solutions to the original problem. This entire Lagrangian heuristic procedure is shown to scale much better on transit networks with an increasing number of bus lines than trying to solve the original problem with an off-the-shelf solver. The proposed procedure is then tested in the high-fidelity microscopic traffic environment Vissim on a bus network constructed from an openly available dataset of the city of Chicago. The results show the benefits of combining the charging scheduling decisions together with the real-time operational control of the vehicles as the proposed control framework manages to achieve both a better level of service and lower charging costs over control baselines with predetermined charging schedules.Comment: 29 pages, 9 figure
    • …
    corecore