4,166 research outputs found

    An examination of thermal features' relevance in the task of battery-fault detection

    Get PDF
    Uninterruptible power supplies (UPS), represented by lead-acid batteries, play an important role in various kinds of industries. They protect industrial technologies from being damaged by dangerous interruptions of an electric power supply. Advanced UPS monitoring performed by a complex battery management system (BMS) prevents the UPS from sustaining more serious damage due to its timely and accurate battery-fault detection based on voltage metering. This technique is very advanced and precise but also very expensive on a long-term basis. This article describes an experiment applying infrared thermographic measurements during a long term monitoring and fault detection in UPS. The assumption that the battery overheat implies its damaged state is the leading factor of our experiments. They are based on real measured data on various UPS battery sets and several statistical examinations confirming the high relevancy of the thermal features with mostly over 90% detection accuracy. Such a model can be used as a supplement for lead-acid battery based UPS monitoring to ensure their higher reliability under significantly lower maintenance costs.Web of Science82art. no. 18

    Uncertainties in land use data

    Get PDF
    This paper deals with the description and assessment of uncertainties in land use data derived from Remote Sensing observations, in the context of hydrological studies. Land use is a categorical regionalised variable reporting the main socio-economic role each location has, where the role is inferred from the pattern of occupation of land. The properties of this pattern that are relevant to hydrological processes have to be known with some accuracy in order to obtain reliable results; hence, uncertainty in land use data may lead to uncertainty in model predictions. There are two main uncertainties surrounding land use data, positional and categorical. The first one is briefly addressed and the second one is explored in more depth, including the factors that influence it. We (1) argue that the conventional method used to assess categorical uncertainty, the confusion matrix, is insufficient to propagate uncertainty through distributed hydrologic models; (2) report some alternative methods to tackle this and other insufficiencies; (3) stress the role of metadata as a more reliable means to assess the degree of distrust with which these data should be used; and (4) suggest some practical recommendations

    Relating Population-Code Representations between Man, Monkey, and Computational Models

    Get PDF
    Perceptual and cognitive content is thought to be represented in the brain by patterns of activity across populations of neurons. In order to test whether a computational model can explain a given population code and whether corresponding codes in man and monkey convey the same information, we need to quantitatively relate population-code representations. Here I give a brief introduction to representational similarity analysis, a particular approach to this problem. A population code is characterized by a representational dissimilarity matrix (RDM), which contains a dissimilarity for each pair of activity patterns elicited by a given stimulus set. The RDM encapsulates which distinctions the representation emphasizes and which it deemphasizes. By analyzing correlations between RDMs we can test models and compare different species. Moreover, we can study how representations are transformed across stages of processing and how they relate to behavioral measures of object similarity. We use an example from object vision to illustrate the method's potential to bridge major divides that have hampered progress in systems neuroscience

    A fingerprint of a heterogeneous data set

    Get PDF
    In this paper, we describe the fingerprint method, a technique to classify bags of mixed-type measurements. The method was designed to solve a real-world industrial problem: classifying industrial plants (individuals at a higher level of organisation) starting from the measurements collected from their production lines (individuals at a lower level of organisation). In this specific application, the categorical information attached to the numerical measurements induced simple mixture-like structures on the global multivariate distributions associated with different classes. The fingerprint method is designed to compare the mixture components of a given test bag with the corresponding mixture components associated with the different classes, identifying the most similar generating distribution. When compared to other classification algorithms applied to several synthetic data sets and the original industrial data set, the proposed classifier showed remarkable improvements in performance

    Predictive Modelling Approach to Data-Driven Computational Preventive Medicine

    Get PDF
    This thesis contributes novel predictive modelling approaches to data-driven computational preventive medicine and offers an alternative framework to statistical analysis in preventive medicine research. In the early parts of this research, this thesis presents research by proposing a synergy of machine learning methods for detecting patterns and developing inexpensive predictive models from healthcare data to classify the potential occurrence of adverse health events. In particular, the data-driven methodology is founded upon a heuristic-systematic assessment of several machine-learning methods, data preprocessing techniques, models’ training estimation and optimisation, and performance evaluation, yielding a novel computational data-driven framework, Octopus. Midway through this research, this thesis advances research in preventive medicine and data mining by proposing several new extensions in data preparation and preprocessing. It offers new recommendations for data quality assessment checks, a novel multimethod imputation (MMI) process for missing data mitigation, a novel imbalanced resampling approach, and minority pattern reconstruction (MPR) led by information theory. This thesis also extends the area of model performance evaluation with a novel classification performance ranking metric called XDistance. In particular, the experimental results show that building predictive models with the methods guided by our new framework (Octopus) yields domain experts' approval of the new reliable models’ performance. Also, performing the data quality checks and applying the MMI process led healthcare practitioners to outweigh predictive reliability over interpretability. The application of MPR and its hybrid resampling strategies led to better performances in line with experts' success criteria than the traditional imbalanced data resampling techniques. Finally, the use of the XDistance performance ranking metric was found to be more effective in ranking several classifiers' performances while offering an indication of class bias, unlike existing performance metrics The overall contributions of this thesis can be summarised as follow. First, several data mining techniques were thoroughly assessed to formulate the new Octopus framework to produce new reliable classifiers. In addition, we offer a further understanding of the impact of newly engineered features, the physical activity index (PAI) and biological effective dose (BED). Second, the newly developed methods within the new framework. Finally, the newly accepted developed predictive models help detect adverse health events, namely, visceral fat-associated diseases and advanced breast cancer radiotherapy toxicity side effects. These contributions could be used to guide future theories, experiments and healthcare interventions in preventive medicine and data mining

    Automatic Bayesian Density Analysis

    Full text link
    Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.Comment: In proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Machine Learning Prediction of Susceptibility to Visceral Fat Associated Diseases

    Get PDF
    Classifying subjects into risk categories is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective of such algorithms is to use several features to predict dichotomous responses (e.g., healthy/at risk). Similar to statistical inference modelling, ML modelling is subject to the problem of class imbalance and is affected by the majority class, increasing the false-negative rate. In this study, we built and evaluated thirty-six ML models to classify approximately 4300 female and 4100 male participants from the UK Biobank into three categorical risk statuses based on discretised visceral adipose tissue (VAT) measurements from magnetic resonance imaging. We also examined the effect of sampling techniques on the models when dealing with class imbalance. The sampling techniques used had a significant impact on the classification and resulted in an improvement in risk status prediction by facilitating an increase in the information contained within each variable. Based on domain expert criteria the best three classification models for the female and male cohort visceral fat prediction were identified. The Area Under Receiver Operator Characteristic curve of the models tested (with external data) was 0.78 to 0.89 for females and 0.75 to 0.86 for males. These encouraging results will be used to guide further development of models to enable prediction of VAT value. This will be useful to identify individuals with excess VAT volume who are at risk of developing metabolic disease ensuring relevant lifestyle interventions can be appropriately targeted

    Optimal path planning for detection and classification of underwater targets using sonar

    Get PDF
    2021 Spring.Includes bibliographical references.The work presented in this dissertation focuses on choosing an optimal path for performing sequential detection and classification state estimation to identify potential underwater targets using sonar imagery. The detection state estimation falls under the occupancy grid framework, modeling the relationship between occupancy state of grid cells and sensor measurements, and allows for the consideration of statistical dependence between the occupancy state of each grid cell in the map. This is in direct contrast to the classical formulations of occupancy grid frameworks, in which the occupancy state of each grid cell is considered statistically independent. The new method provides more accurate estimates, and occupancy grids estimated with this method typically converge with fewer measurements. The classification state estimation utilises a Dirichlet-Categorical model and a one-step classifier to perform efficient updating of the classification state estimate for each grid cell. To show the performance capabilities of the developed sequential state estimation methods, they are applied to sonar systems in littoral areas in which targets lay on the seafloor, could be proud, partially or fully buried. Additionally, a new approach to the active perception problem, which seeks to select a series of sensing actions that provide the maximal amount of information to the system, is developed. This new approach leverages the aforementioned sequential state estimation techniques to develop a set of information-theoretic cost functions that can be used for optimal sensing action selection. A path planning cost function is developed, defined as the mutual information between the aforementioned state variables before and after a measurement. The cost function is expressed in closed form by considering the prior and posterior distributions of the state variables. Choice of the optimal sensing actions is performed by modeling the path planning as a Markov decision problem, and solving it with the rollout algorithm. This work, supported by the Office of Naval Research (ONR), is intended to develop a suite of interactive sensing algorithms to autonomously command an autonomous underwater vehicle (AUV) for the task of detection and classification of underwater mines, while choosing an optimal navigation route that increases the quality of the detection and classification state estimates
    corecore