1,501 research outputs found

    Knowledge Management and Conceptual Modelling Towards Better Business Results

    Get PDF
    A short review on the idea of a synergy of knowledge management and conceptual modelling methods is given in this paper. Innovative systems fostering knowledge management in modern businesses are necessary for safe and efficient knowledge management and are a welcome addition to slowly changing business models in a turbulent socio-economic environment of the modern world. The goal of this paper is to present a short discussion on various methods of knowledge management and how they are related to conceptual modelling. Furthermore, motivation for using conceptual modelling in knowledge management is argued using various references to already published research. The reasoning is steered towards the conclusions in favour of conceptual modelling in knowledge management, but not without providing strong arguments both in favour and against the starting presumption of usefulness of conceptual modelling in knowledge management. This work is licensed under a&nbsp;Creative Commons Attribution-NonCommercial 4.0 International License.</p

    Knowledge Management and Conceptual Modelling Towards Better Business Results

    Get PDF
    A short review on the idea of a synergy of knowledge management and conceptual modelling methods is given in this paper. Innovative systems fostering knowledge management in modern businesses are necessary for safe and efficient knowledge management and are a welcome addition to slowly changing business models in a turbulent socio-economic environment of the modern world. The goal of this paper is to present a short discussion on various methods of knowledge management and how they are related to conceptual modelling. Furthermore, motivation for using conceptual modelling in knowledge management is argued using various references to already published research. The reasoning is steered towards the conclusions in favour of conceptual modelling in knowledge management, but not without providing strong arguments both in favour and against the starting presumption of usefulness of conceptual modelling in knowledge management. This work is licensed under a&nbsp;Creative Commons Attribution-NonCommercial 4.0 International License.</p

    An Intelligent Knowledge Management System from a Semantic Perspective

    Get PDF
    Knowledge Management Systems (KMS) are important tools by which organizations can better use information and, more importantly, manage knowledge. Unlike other strategies, knowledge management (KM) is difficult to define because it encompasses a range of concepts, management tasks, technologies, and organizational practices, all of which come under the umbrella of the information management. Semantic approaches allow easier and more efficient training, maintenance, and support knowledge. Current ICT markets are dominated by relational databases and document-centric information technologies, procedural algorithmic programming paradigms, and stack architecture. A key driver of global economic expansion in the coming decade is the build-out of broadband telecommunications and the deployment of intelligent services bundling. This paper introduces the main characteristics of an Intelligent Knowledge Management System as a multiagent system used in a Learning Control Problem (IKMSLCP), from a semantic perspective. We describe an intelligent KM framework, allowing the observer (a human agent) to learn from experience. This framework makes the system dynamic (flexible and adaptable) so it evolves, guaranteeing high levels of stability when performing his domain problem P. To capture by the agent who learn the control knowledge for solving a task-allocation problem, the control expert system uses at any time, an internal fuzzy knowledge model of the (business) process based on the last knowledge model.knowledge management, fuzzy control, semantic technologies, computational intelligence

    Strategies for Managing Linked Enterprise Data

    Get PDF
    Data, information and knowledge become key assets of our 21st century economy. As a result, data and knowledge management become key tasks with regard to sustainable development and business success. Often, knowledge is not explicitly represented residing in the minds of people or scattered among a variety of data sources. Knowledge is inherently associated with semantics that conveys its meaning to a human or machine agent. The Linked Data concept facilitates the semantic integration of heterogeneous data sources. However, we still lack an effective knowledge integration strategy applicable to enterprise scenarios, which balances between large amounts of data stored in legacy information systems and data lakes as well as tailored domain specific ontologies that formally describe real-world concepts. In this thesis we investigate strategies for managing linked enterprise data analyzing how actionable knowledge can be derived from enterprise data leveraging knowledge graphs. Actionable knowledge provides valuable insights, supports decision makers with clear interpretable arguments, and keeps its inference processes explainable. The benefits of employing actionable knowledge and its coherent management strategy span from a holistic semantic representation layer of enterprise data, i.e., representing numerous data sources as one, consistent, and integrated knowledge source, to unified interaction mechanisms with other systems that are able to effectively and efficiently leverage such an actionable knowledge. Several challenges have to be addressed on different conceptual levels pursuing this goal, i.e., means for representing knowledge, semantic data integration of raw data sources and subsequent knowledge extraction, communication interfaces, and implementation. In order to tackle those challenges we present the concept of Enterprise Knowledge Graphs (EKGs), describe their characteristics and advantages compared to existing approaches. We study each challenge with regard to using EKGs and demonstrate their efficiency. In particular, EKGs are able to reduce the semantic data integration effort when processing large-scale heterogeneous datasets. Then, having built a consistent logical integration layer with heterogeneity behind the scenes, EKGs unify query processing and enable effective communication interfaces for other enterprise systems. The achieved results allow us to conclude that strategies for managing linked enterprise data based on EKGs exhibit reasonable performance, comply with enterprise requirements, and ensure integrated data and knowledge management throughout its life cycle

    SOME CONCEPTUAL PROPERTIES FOR KNOWLEDGE MANAGEMENT SYSTEMS DESIGN

    Get PDF
    Knowledge Management Systems (KMS) are important tools by which organizations can better useinformation and, more importantly, manage knowledge. Unlike other strategies, knowledge management (KM) isdifficult to define because it encompasses a range of concepts, management tasks, technologies, and organizationalpractices, all of which come under the umbrella of the information management. Semantic approaches alloweasier and more efficient training, maintenance, and support knowledge. Current ICT markets are dominated byrelational databases and document-centric information technologies, procedural algorithmic programmingparadigms, and stack architecture. A key driver of global economic growth in the coming decade is the build-out ofbroadband telecommunications and the deployment of intelligent services bundling. This paper introduces themain characteristics of an Intelligent Knowledge Management System as a multi-agent system used in a LearningControl Problem (IKMSLCP). We describe an intelligent KM framework, allowing the observer (a human agent)to learn from experience

    A cooperative framework for molecular biology database integration using image object selection

    Get PDF
    The theme and the concept of 'Molecular Biology Database Integration' and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a framework for integrating the molecular biology databases. The framework has proposed to develop a cooperative environment to share information on the basis of common purpose for the molecular biology databases. The research has also reviewed other implementation and interoperability issues for laboratory based, dedicated and target specific database. The research has addressed the following issues: diversity of molecular biology databases schemas, schema constructs and schema implementation multi-database query using image object keying, database integration technologies using context graph, automated navigation among these databases. This thesis has introduced a new approach for database implementation. It has introduced an interoperable component database concept to initiate multidatabase query on gene mutation data. A number of data models have been proposed for gene mutation data which is the basis for integrating the target specific component database to be integrated with the federated information system. The proposed data models are: data models for genetic trait analysis, classification of gene mutation data, pathological lesion data and laboratory data. The main feature of this component database is non-overlapping attributes and it will follow non-redundant integration approach as explained in the thesis. This will be achieved by storing attributes which will not have the union or intersection of any attributes that exist in public domain molecular biology databases. Unlike data warehousing technique, this feature is quite unique and novel. The component database will be integrated with other biological data sources for sharing information in a cooperative environment. This involves developing new tools. The thesis explains the role of these new tools which are: meta data extractor, mapping linker, query generator and result interpreter. These tools are used for a transparent integration without creating any global schema of the participating databases. The thesis has also established the concept of image object keying for multidatabase query and it has proposed a relevant algorithm for matching protein spot in gel electrophoresis image. An object spot in gel electrophoresis image will initiate the query when it is selected by the user. It matches the selected spot with other similar spots in other resource databases. This image object keying method is an alternative to conventional multidatabase query which requires writing complex SQL scripts. This method also resolve the semantic conflicts that exist among molecular biology databases. The research has proposed a new framework based on the context of the web data for interactions with different biological data resources. A formal description of the resource context is described in the thesis. The implementation of the context into Resource Document Framework (RDF) will be able to increase the interoperability by providing the description of the resources and the navigation plan for accessing the web based databases. A higher level construct is developed (has, provide and access) to implement the context into RDF for web interactions. The interactions within the resources are achieved by utilising an integration domain to extract the required information with a single instance and without writing any query scripts. The integration domain allows to navigate and to execute the query plan within the resource databases. An extractor module collects elements from different target webs and unify them as a whole object in a single page. The proposed framework is tested to find specific information e.g., information on Alzheimer's disease, from public domain biology resources, such as, Protein Data Bank, Genome Data Bank, Online Mendalian Inheritance in Man and local database. Finally, the thesis proposes further propositions and plans for future work

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems
    corecore