8,879 research outputs found

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    Emerging technologies for learning report (volume 3)

    Get PDF

    Program your city: Designing an urban integrated open data API

    Get PDF
    Cities accumulate and distribute vast sets of digital information. Many decision-making and planning processes in councils, local governments and organisations are based on both real-time and historical data. Until recently, only a small, carefully selected subset of this information has been released to the public – usually for specific purposes (e.g. train timetables, release of planning application through websites to name just a few). This situation is however changing rapidly. Regulatory frameworks, such as the Freedom of Information Legislation in the US, the UK, the European Union and many other countries guarantee public access to data held by the state. One of the results of this legislation and changing attitudes towards open data has been the widespread release of public information as part of recent Government 2.0 initiatives. This includes the creation of public data catalogues such as data.gov.au (U.S.), data.gov.uk (U.K.), data.gov.au (Australia) at federal government levels, and datasf.org (San Francisco) and data.london.gov.uk (London) at municipal levels. The release of this data has opened up the possibility of a wide range of future applications and services which are now the subject of intensified research efforts. Previous research endeavours have explored the creation of specialised tools to aid decision-making by urban citizens, councils and other stakeholders (Calabrese, Kloeckl & Ratti, 2008; Paulos, Honicky & Hooker, 2009). While these initiatives represent an important step towards open data, they too often result in mere collections of data repositories. Proprietary database formats and the lack of an open application programming interface (API) limit the full potential achievable by allowing these data sets to be cross-queried. Our research, presented in this paper, looks beyond the pure release of data. It is concerned with three essential questions: First, how can data from different sources be integrated into a consistent framework and made accessible? Second, how can ordinary citizens be supported in easily composing data from different sources in order to address their specific problems? Third, what are interfaces that make it easy for citizens to interact with data in an urban environment? How can data be accessed and collected

    Ubiquitous computing and natural interfaces for environmental information

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas AmbientaisThe next computing revolution‘s objective is to embed every street, building, room and object with computational power. Ubiquitous computing (ubicomp) will allow every object to receive and transmit information, sense its surroundings and act accordingly, be located from anywhere in the world, connect every person. Everyone will have the possibility to access information, despite their age, computer knowledge, literacy or physical impairment. It will impact the world in a profound way, empowering mankind, improving the environment, but will also create new challenges that our society, economy, health and global environment will have to overcome. Negative impacts have to be identified and dealt with in advance. Despite these concerns, environmental studies have been mostly absent from discussions on the new paradigm. This thesis seeks to examine ubiquitous computing, its technological emergence, raise awareness towards future impacts and explore the design of new interfaces and rich interaction modes. Environmental information is approached as an area which may greatly benefit from ubicomp as a way to gather, treat and disseminate it, simultaneously complying with the Aarhus convention. In an educational context, new media are poised to revolutionize the way we perceive, learn and interact with environmental information. cUbiq is presented as a natural interface to access that information

    Multi-Sensor Context-Awareness in Mobile Devices and Smart Artefacts

    Get PDF
    The use of context in mobile devices is receiving increasing attention in mobile and ubiquitous computing research. In this article we consider how to augment mobile devices with awareness of their environment and situation as context. Most work to date has been based on integration of generic context sensors, in particular for location and visual context. We propose a different approach based on integration of multiple diverse sensors for awareness of situational context that can not be inferred from location, and targeted at mobile device platforms that typically do not permit processing of visual context. We have investigated multi-sensor context-awareness in a series of projects, and report experience from development of a number of device prototypes. These include development of an awareness module for augmentation of a mobile phone, of the Mediacup exemplifying context-enabled everyday artifacts, and of the Smart-Its platform for aware mobile devices. The prototypes have been explored in various applications to validate the multi-sensor approach to awareness, and to develop new perspectives of how embedded context-awareness can be applied in mobile and ubiquitous computing

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future
    corecore