52,512 research outputs found

    A case study of predicting banking customers behaviour by using data mining

    Get PDF
    Data Mining (DM) is a technique that examines information stored in large database or data warehouse and find the patterns or trends in the data that are not yet known or suspected. DM techniques have been applied to a variety of different domains including Customer Relationship Management CRM). In this research, a new Customer Knowledge Management (CKM) framework based on data mining is proposed. The proposed data mining framework in this study manages relationships between banking organizations and their customers. Two typical data mining techniques - Neural Network and Association Rules - are applied to predict the behavior of customers and to increase the decision-making processes for recalling valued customers in banking industries. The experiments on the real world dataset are conducted and the different metrics are used to evaluate the performances of the two data mining models. The results indicate that the Neural Network model achieves better accuracy but takes longer time to train the model

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    Evaluation and optimization of frequent association rule based classification

    Get PDF
    Deriving useful and interesting rules from a data mining system is an essential and important task. Problems such as the discovery of random and coincidental patterns or patterns with no significant values, and the generation of a large volume of rules from a database commonly occur. Works on sustaining the interestingness of rules generated by data mining algorithms are actively and constantly being examined and developed. In this paper, a systematic way to evaluate the association rules discovered from frequent itemset mining algorithms, combining common data mining and statistical interestingness measures, and outline an appropriated sequence of usage is presented. The experiments are performed using a number of real-world datasets that represent diverse characteristics of data/items, and detailed evaluation of rule sets is provided. Empirical results show that with a proper combination of data mining and statistical analysis, the framework is capable of eliminating a large number of non-significant, redundant and contradictive rules while preserving relatively valuable high accuracy and coverage rules when used in the classification problem. Moreover, the results reveal the important characteristics of mining frequent itemsets, and the impact of confidence measure for the classification task

    Quantitative Redundancy in Partial Implications

    Get PDF
    We survey the different properties of an intuitive notion of redundancy, as a function of the precise semantics given to the notion of partial implication. The final version of this survey will appear in the Proceedings of the Int. Conf. Formal Concept Analysis, 2015.Comment: Int. Conf. Formal Concept Analysis, 201

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper
    • …
    corecore